
The supplementary material is intended to provide mathematical details the text leaves 

out for clarity. We begin with a section describing how we approximate genotype 

frequencies from allele frequencies.  We then calculate fitness for the autosomal case.  

We repeat the calculations for an X-linked allele.  We add additional details of equilibria 

calculations and we attach the Maple code for the equilibria calculations.  Finally, we 

include supplementary figures. 
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I.  Understanding the relationship between genotype frequency and Medea allele 

frequency. 

In a Medea-bearing population the fate of an individual depends on the genotype of its mother 

as well as its own genotype. Thus, knowledge of one genotype frequency after a single round 

of random mating is not sufficient to characterize the population.  

 

We approach this problem first by presenting an example, a Medea with a 20% multiplicative 

embryonic fitness cost.  We plot, on a DeFinetti diagram, the trajectories of genotype 

frequencies over 1000 generations when present in a population initially composed of different 

proportions of Medea homozygotes and non-Medea individuals (points along the horizontal 

axis), non-Medea individuals and Medea heterozygotes (points along the left axis), or Medea 

homozygotes and heterozygotes (points along the right axis) (Fig. S1A). For this set of 

parameters, all populations converge to one of two stable equilibrium points, composed of 

either non-Medea individuals, or of two thirds Medea homozygotes and one third Medea 

heterozygotes, the stable internal equilibrium allele frequency (SIEAF) (Fig. S1A). The regions 

of initial conditions that converge to each stable equilibrium are separated by a set of gamete 

frequencies, known as a separatrix, that define a threshold between Medea allele loss and 

fixation. The separatrix is the stable manifold of the unstable equilibrium (a saddle).  This 

family of points includes one, the unstable internal equilibrium allele frequency (the UIEAF), 

discussed further below. Importantly, all populations initiating on either side of the separatrix 

approach and ultimately follow a common trajectory in moving towards one or the other stable 

equilibrium (the common trajectory is the unstable manifold of the unstable equilibrium). This 

observation implies that one can calculate genotype frequencies, and thus allele fitness, as a 
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function of Medea allele frequency, by calculating the approximate positions of points on this 

common trajectory. To do this we take a number of starting parental genotypes distributed 

throughout the parameter space of all possible parental genotypes, indicated by the black dots 

in the DeFinetti diagrams in Fig. S1B.  Each genotype in the distribution is advanced one 

generation and all possible genotype distributions for that generation are plotted, indicated by 

the green region. The procedure is repeated for a second generation, resulting in the region of 

possible genotypes indicated in red; for a third generation, resulting in the region of possible 

genotypes indicated in yellow; and for a fourth generation, resulting in the region of possible 

genotypes indicated in blue. After four generations the genotype space distribution is very tight 

(the blue region that resembles a line in Fig. S1B). Throughout the remainder of the text we use 

the constrained values of genotype space during the fourth generation to calculate genotype 

frequencies and fitness values with respect to Medea allele frequency. Plots of genotype or 

fitness as a function of Medea allele frequency (as in Fig. 1A,C; Fig. 4B; Fig. 5A) which 

appear line-like, are not one-dimensional lines, but narrow two-dimensional bands around a 

line. Places where the bands cross are not points but small areas.   
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II. Fitness Calculations 

By fitness of a particular genotype we mean the average number of progeny a zygote of 

that genotype will have, given a particular zygote genotype distribution.  A zygote with a 

fitness of 1 exactly replaces itself (has one progeny).  Fitness of a particular allele refers 

to the average number of progeny an individual with that allele will have, given a 

particular genotype distribution. Fitness has three components.  1) The ability of an 

organism to survive to reproductive maturity, lgenotype.   This is the embryonic fitness.  2) 

The ability of an organism to make gametes (a parental fertility or fecundity loss), 

mgenotype.  3)  A component specific to Medea, the ability of the gametes to survive fusion 

to form a viable zygote, ngametetype.  In order to calculate fitness we must track the fate of 

the 8 types of gametes.  Gametes have 3 essential attributes, 1) whether they are sperm or 

egg, 2) whether they carry the Medea or non-Medea allele and 3) the genotype of the 

gamete’s parent. 

 

To find fitnesses, we begin by finding the distribution of gametes given a distribution of 

zygotes.  We start by introducing the following terminology.  A zygote has already 

undergone death by the Medea mechanism but has not experienced any fitness costs. 

Zygotes can be zygote++, zygoteM+, or zygoteMM for the fraction of zygotes that are 

homozygous non-Medea, heterozygous for Medea, or homozygous Medea, respectively.  

Egg/sperm sub gamete genotype, gamete’s parent’s genotype.  Gamete genotype can be p 

or q for Medea and non Medea respectively.  Gamete’s parent’s genotype can be MM, 

M+, or ++ for homozygous Medea, heterozygous Medea and homozygous non-Medea, 

respectively.  For example, we define spmq++ as the the fraction of male gametes that are 
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non-Medea from a non-Medea parent.  VP is the parental fitness cost.  In the case of an 

egg, it is VD and in the case of a sperm it is VS.  We do not consider the case where VD is 

not equal to VS.  Mathematically, 
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Now we examine the fitness of each type of gamete (part 3).  To find fitness, we examine 

the fate of the gamete when it joins with all other possible gametes.  For example, a non-

Medea sperm from a non-Medea parent will always survive when it joins a non-Medea 

egg from a non-Medea parent, will die a fraction (1-t0) of the time when it joins a non-

Medea egg from a heterozygous parent, will always survive when it joins a Medea egg 

from a heterozygous parent, and will die a fraction (1-t1) of the time when it joins a 

Medea egg from a homozygous Medea female.  To find the fitness of the genotype, we 

find the mean of the fitness of sperm and egg of the same genotype. 
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III. Genotype fitness 

 

The genotype fitness is calculated by multiplying each component of fitness. 
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IV. Allele fitness 

The Medea allele fitness is calculated by finding the fitness of the heterozygote 

multiplied by the fraction of Medea alleles in heterozygotes and adding the fitness of 

homozygous Medea multiplied by the fraction of Medea alleles in homozygotes.  Fitness 

of the non-Medea allele is calculated similarly. 
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V. Population fitness 

The population fitness is the sum of the products of each genotype and the fraction of 

zygotes with that genotype. 
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VI. X chromosome 

An X-linked Medea is different from autosomal Medea in that the ratio of males to 

females is not 1 to 1.  There are only 2 male genotypes Medea Y and non-Medea Y.  

 Parental Genotype Frequency Male Offspring 

Frequency 

Female Offspring Frequency 

Family Male Female Mating Medea non-Medea Homo Het WT 

1 SMY DMM SMY*DMM VE  VE
2   

2 S+Y DMM S+Y *DMM VE   VE  

3 SMY DM+ SMY*DM+ ½ VE ½ ½ VE
2 ½ VE  

4 S+Y DM+ S+Y*DM+ ½ VE ½  ½ VE ½ 

5 SMY D++ SMY*D++  1  VE  

6 S+Y D++ S+Y*D++  1   1 

Equations are shown in the text. 

 

VII. X Chromosome Fitness: 

We use the same definitions of fitness and symbols as defined in the autosomal fitness 

cost case. 
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Now we examine the fitness of each type of gamete (part 3).  To find fitness, we examine 

the fate of the gamete when it joins with all other possible gametes. 

 

pMMpMqYspermq eggeggeggn ++= ++++  

YMYpMYYYYqYeggq spmspmspmspmn +++= +++  

 

pMMpMqspermYM eggeggeggn ++= ++++  

pMYeggqM spmn =+  

 

pMMpMqMqspermpM eggeggeggeggn +++= +++++  

YYpMYYMYYqeggpM spmspmspmspmn +++ +++=  

 

pMMpMqMqspermpMY eggeggeggeggn +++= ++++  

pMYpMYqMYYqeggpMM spmspmspmspmn +++= +  
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VIII. X Chromosome Allele fitness 

The Medea allele fitness is calculated by finding the fitness of the heterozygous females 

multiplied by the fraction of Medea alleles in heterozygous, adding the fitness of 

homozygous Medea females multiplied by the fraction of Medea alleles in a homozygous 

female Medea background and adding the fitness of male Medea individuals and 

multiplying by the fraction of Medea alleles in a male Medea background.  Fitness of the 

non-Medea allele and Y are calculated similarly. 

 

IX. X Chromosome Population fitness 

The population fitness is the sum of the fitness of each genotype multiplied by the 

fraction of zygotes with that genotype. 
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X. Equilibria Calculations 

The attached code calculates equilibrium values and stability for both autosomal and X-

linked Medea.  The code contains much of the output.  Some of the equilibria take many 

pages to output; therefore that output has been suppressed.  Some calculations take 

minutes to days to run on a PC with 2 gigabytes of RAM with and an Intel® Core2™ 

CPU .  We provide appropriate warnings.   

 

Here we provide a summary of the calculations with more details than are present in the 

text. Some cumbersome equations are not reproduced.  Equilibria are calculated by 

simultaneously solving ++++ = GG '

 and MMMM GG =' .  To find stability, the modulus of 

the eigenvalues of the Jacobian must be less than 1. 

 

Recall the Jacobian matrix is defined as 
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XI. Embrynoic Fitness Costs 

VD,Het=VD,Homo=VS,Het=VS,Homo=1, t1=0, t0=1 

 

There are 4 equilibria. 

1.  G++ = 1, GM+ = GMM= 0 
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The eigenvalues are 
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2
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Using other genotype boundaries, no additional feasibility conditions are found. 

Stability: the eigenvalues are cumbersome expressions (see expression 22 in the maple code).  

In the biologically feasible realm, the modulus of each eigenvalue is equal to 1 when 1, =HetEV  

and 2
,,, HetEHetEHomoE VVV −= .  These boundaries are coincident with feasibility.  Except at 

boundaries, all feasible solutions are unstable. 
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The second eigenvalue shows a change in stability that is coincident with feasibility.  Therefore, 

no examination HomoEHetE VV ,, ≥ is necessary. 

 

The modulus of the first eigenvalue equals 1 when 

2
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The first solution is never biologically feasible.  The second solution is stable when 
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4. G++ = 0, GM+ = 0, GMM= 1 
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The stability boundary is 
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XII. Parental Fitness Costs 

VD,Het=VS,Het, VD,Homo=VS,Homo, VE,Homo=VE,Het=1,  t1=0, t0=1 
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Stability and feasibility analysis yields the same boundaries as with embryonic costs.  Detailed 

analysis is shown in Maple Code.  As noted in the text, the equilibrium values are different 

from those associated with embryonic costs. 

 

XIII. Maternal Fitness Costs  

VE,Het=VS,Het=VE,Homo=VS,Homo =1,  t1=0, t0=1 

1. G++ = 1, GM+ = GMM= 0 

The eigenvalues are 
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homozygous fitness is greater than the expression. 

 

3.  The all genotypes equilibrium is a very cumbersome expression.  However, by solving for 

no non-Medea individuals in the population, we find that the biological feasibility boundary is 

the same as the stability boundary for equilibrium 2.  There are no other stability boundaries.  

The equilibrium is always unstable when feasible. 
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4. G++ = 0, GMM= 1 

The eigenvalues are 
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Figure S2 partitions (VHet, VHomo) fitness parameter space into regions in which linear stability 

analysis indicate qualitatively similar behaviors are observed. The case for embryonic fitness 

costs is illustrated in Fig. S2A (see  also Fig. 2); the case of maternal fitness costs is illustrated 

in Figure S2B. 

 

XIV. Embryonic Fitness Costs and t1 
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There are 4 equilibria. 

1.  G++ = 1, GM+ = GMM= 0 
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Only the (-) solution is relevant. 

 

Stability:  No eigenvalues are less than or equal to 1 within the biologically feasible region. 

Therefore the equilibrium is unstable. 
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The eigenvalues are cumbersome functions that are not reproduced here – see Maple code. 
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In case (a), this is the feasibility boundary. 

In case (b), this solution is entirely outside the range of biological feasibility. 

In case (c), no change of stability is found after passing this curve. 

In case (d), solutions are stable above the curve and unstable below it. 

No additional boundaries are found with solutions of the second eigenvalue. 
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Figure S3 partitions (t1, VHet) parameter space for embryonic and parental fitness costs (Fig. 

S3A), or maternal fitness costs (Fig. S3B) into regions in which linear stability analysis 

indicates qualitatively similar behaviors are observed. Qualitative behavior changes as we 

cross each of these curves, with the occurrence of a bifurcation, as described in the legend to 

Fig. 2 and Fig. S2.  

 

XV. X-linked Element 

1.   DMM=0; DM+=0; D++=1/2; SMY=0; S+Y=1/2 

 

The eigenvalues are 0, -.5V and V.  This equilibrium is always stable except when the fitness 

equals 1.   

 

2.  All genotypes.  See Maple Code for expressions for the genotype fractions at equilibrium.   

This equilibrium is unstable.  The Maple code shows this by plotting the modulus of the 

eigenvalues for all possible fitnesses.   

 

3.  No non-Medea individuals 
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This equilibrium only exists for fitness values greater than or equal to 0.5.  The eigenvalues are 

0 and HetEV ,2 .  This equilibrium is stable when it exists, except at the boundaries where the 

analysis is inconclusive. 

 

4. No non-Medea alleles. 
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The eigenvalues are  0 and 
HetEV ,2

1 .  Therefore this equilibrium is stable for fitnesses greater 

than 0.5, and unstable for lower fitnesses; stability at the equality is inconclusive. 

Ward et al 19



#Ward, Catherine 

#Supplemental Materials: Calculations for feasibility and 

stability of autosomal Medeas

#This is a long file organized into 5 sections: 

#1) Loading the Model

#2) Embryonic only fitness costs starts after execution group 

(2).

#3) Maternal only fitness costs starts after execution group 

(35).

#4) Parental fitness costs starts after execution group (72)

#5) t1 fitness cost starts after execution group (95).

#Each section begins with simplifying assumptions.  We calculate

equilibria.  Then we look at the feasibility of the equilibrium 

through parameter space.  Then we calculate the stability by 

finding conditions such that the eigenvalues of the Jacobian 

matrix have modulus one (potential boundaries for stability 

changes).  There are usually several pages of analysis to 

determine which potential boundaries are biologically relevant 

(ie, fitness between 0 and 1).  Having determined all boundary 

conditions, we check the stability of the equilibrium in each 

region of space.

#We begin by defining the general equations.

#Terms are as defined in the text except the next generation is 

nextGmm rather than Gmm', non-Medea individuals are Gpp, 

heterozygotes are Gmp rather than Gm+ and, of course, suscripts 

are not used.
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(1)(1)

#We now give the code that will generate the general solutions. 

The general solution is too complex to be useful.  A PC with 2 

gigs of RAM takes days to solve this and then crashes if any 

further manipulations are attempted.  Macs with 5 gigs of RAM 

simply do not run this calculation.

#In order to do linear stability analysis we find the Jacobian 

Matrix

#For the two trivial solutions to the general equation (no non-

Medea alleles and no Medea alleles), we present the stability 

analysis.

#First no Medea alleles
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(3)(3)

(2)(2)

(4)(4)

(5)(5)

#No non-Medea alleles

#Now we present the stability analysis for a selection of 

simplifications

#Case 1) Embryonic Fitness Cost, No parental 
effects; mu0=0 and mu1=1
#We begin by introducing the simplified senarios

#Solve for the 4 biologically relevant equilibria

#Medea Homozygous Equilibrium 

#Note the conditions for stability are the modulus of each of 

the eigenvalues must be less than 1.  This equilibrium is stable

when VEHomo>VEHet, unstable VEHet>VEHomo, and the linear 

analysis is inconclusive at the equality.  Recall, VEHet and 

VEHomo must both be non-negative.

#No non-Medea Genotype Equilibrium
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(12)(12)

(9)(9)

(11)(11)

(13)(13)

(10)(10)

(14)(14)

(7)(7)

(6)(6)

(8)(8)

#We test VEHet<VEHomo and VEHomo<VEHet to find feasiblity.

#Now, we examine stability.

#When VEHomo<VEHet(1-VEHet), this equilibrium is unstable.

#When VEHet(1-VEHet)<VEHomo<VEHet, this equilibrium is stable.

#The all non-Medea equilibrium

#If VEHet<1, this equilibrium is stable.

#If VEHet=1, linear analysis is inconclusive.
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(17)(17)

(15)(15)

(18)(18)

(16)(16)

(20)(20)

(19)(19)

(21)(21)

(22)(22)

#All 3 genotypes in the equilibrium population

.

0.04255319149

0.1063829787

#This equilibrium is feasible when VEHomo>VEHet-VEHet^2.

#To be unstable, the modulus of an eigenvalue has to be >1.  

Let's find when they are equal to 1.

#Does not apply; VEHomo>0
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(30)(30)

(28)(28)

(25)(25)

(27)(27)

(26)(26)

(24)(24)

(29)(29)

(31)(31)

(32)(32)

(23)(23)

#a boundary; coincident with feasibility

#Does not apply; VEHomo>0

#coincident with feasiblity

#soln[7] is feasible

#We plot this function for 0<VEHet<1.  VEHomo<0, therefore 

boundary condition does not apply.  
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(33)(33)

(34)(34)

(36)(36)

(23)(23)

(35)(35)

Error, invalid subscript selector

#No more solutions

#Find when the modulus of the second eigenvalue is 1.

#No additional solutions found.

#This means the stability at VEHet=1 and VEHomo=VEHet-VEHet^2 is

inconclusive.  This equilibrium does not exist when 

VEHomo<VEHet-VEHET^2.  We need to test VEHomo>VEHet-VEHet^2 

while VEHet is not 1.  

#Take a point, VEHet=.8, VEHomo=.9

1.197029685

#This equilibrium is unstable for VEHomo>VEHet-VEHet^2.

#Let's work on the VEHet=1 condition.

1

0

#The VEHet=1 condition collapses to all non-Medea individuals in

the population.

#Case 2) Maternal Fitness only, No 

parental fitness effects; mu0=0 and mu1=1
#We begin by introducing the simplifications.

#Solve for the 4 biologically relevant equilibria

#All Medea alleles
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(41)(41)

(37)(37)

(38)(38)

(39)(39)

(43)(43)

(45)(45)

(44)(44)

(42)(42)

(40)(40)

(23)(23)

#When VDHet>VDHomo, this equilibrium is unstable.  It is stable 

at VDHomo>VDHet and inconclusive at the equality.

#No non-Medea Individuals

#First determine which radical is relevant

#The second radical is relevant.

#Find when the relevant radical equals 0.

#Only the solution with the positive radical is feasible.
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(37)(37)

(47)(47)

(48)(48)

(46)(46)

(23)(23)

#When

#When VDHet

#These eigenvalues are complicated.  The stategy is to solve for

when modulus of the eigenvalues equal 1 to divide parameter 

space into regions and then test stability in each region.  

These are potential boundaries.  We only consider 0<VDHet<1 and 

0<VDHomo<1.

#Not a boundary; complex.

#Not a boundary; complex.

#To see if solution [3] has solutions in biologically relevant 

space, we plot this solution.
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(37)(37)

(49)(49)

(23)(23)

VDHet
0 1

#VDHomo<0, therefore this solution is therefore biologically not

relevant.

#To see if solution [4] has solutions in biologically relevant 

space, we plot this solution.
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(51)(51)

(37)(37)

(50)(50)

(23)(23)

VDHet
0 1

VDHomo

0

1

#This solution is biologically relevant.

#This solution contains imaginary terms.

#To see if solution [6] has solutions in biologically relevant 

space, we plot this solution.
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(37)(37)

(52)(52)

(53)(53)

(54)(54)

(23)(23)

VDHomo
1

0

#VDHet<0; therefore solution not biologically feasible.

#complex; no transition

#complex, no transition
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(58)(58)

(37)(37)

(56)(56)

(55)(55)

(57)(57)

(54)(54)

(23)(23)

#VDHomo is negative over the range of VDHet.

#solution has negative values of VDHet.  Therefore, not 

relevant.

Error, invalid subscript selector

#No more solutions

#We now focus on boundary conditions based on the second 

eigenvalue.

#These solutions are the same as those for the first eigenvalue.

 No additional boundary conditions.

#We now test points on each side of the boundary condition.

#The first eigenvalue is greater than one when VDHomo<-(-VDHet^2

-VDHet+1+sqrt(4VDHet^3-7VDHet&2+2VDHet+1))/(VDHet-2).  Thefore, 
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(37)(37)

(63)(63)

(61)(61)

(64)(64)

(65)(65)

(54)(54)

(62)(62)

(23)(23)

(60)(60)

(59)(59)

the equilibrium is unstable.  It is stable when the inequality 

reverses and the analysis is inconclusive at the equality.

#All non-Medea individuals

#If VDHet<1, this equilibrium is stable.

#If VDHet=1, linear analysis is inconclusive.

#All genotypes

#Those expressions are very complicated.

#We begin by solving this at the boundary conditions (any 

Genotype = 0 or 1).

#These expressions are identical to the the expressions for 

stability of the heterozygous and homozygous Medea equilibrium. 

Only the third expression has VDHomo and VDHet both between 0 

and 1.  Now we check for solutions that contain Gpp, Gmm and Gmp

all between 0 and 1.  
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(37)(37)

(70)(70)

(68)(68)

(66)(66)

(69)(69)

(67)(67)

(65)(65)

(54)(54)

(23)(23)

#Only the first value of the maternalEq solutions are valid.

#This equilibrium does not have a solution below the boundary.

#We now examine the other boundary conditions (each genotype 

equals 0 and 1)

#We now test this solution with the other two genotypes.  Gmm 

and Gmp must equal 0 for this solution to be relevant.  Gmm and 

Gmp are not 0 for any values of 0<VDHet<1.

#Plot shows no biologially interesting values

#There are no other boundaries for feasiblity.

#The only values possible are when VDHomo>-(-VDHet^2-1+VDHet+

sqrt(4*VDHet^3-7*VDHet^2+2*VDHet+1))/(VDHet-2)

#We now look at stability.  We begin by finding eigenvalues.

#To be unstable, the eigenvalues have to be >1.  Let's find when

they are equal to 1.
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(73)(73)

(37)(37)

(72)(72)

(71)(71)

(65)(65)

(54)(54)

(23)(23)

Warning, solutions may have been lost

Warning, solutions may have been lost

#Maple was unable to find any solutions to these equations.  One

possibility is that are no solutions in the biologically 

relevant range.  The second possibility is that Maple could not 

find them.  Therefore we turn to simulation.

#By simulation we find that the eigenvalues are always greater 

than 1 for all values of VDHomo and VDHet in the feasible 

region.

#Case 3) Parental Fitness only, No 

embryonic fitness effects; mu0=0 and mu1=1
#We begin by introducing the simplifications

#Solve for the 4 biologically relevant equilibria

#Only Medea Homozygotes

#If VPHomo>VPHet the equilibrium is unstable.  If VPHomo<VPHet 
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(37)(37)

(74)(74)

(78)(78)

(75)(75)

(80)(80)

(77)(77)

(71)(71)

(79)(79)

(65)(65)

(54)(54)

(76)(76)

(23)(23)

is stable.  The equality is inconclusvie.

#Only Medea Individuals

#Solutions only exist when VDHet>VDHomo.

#This equilibrium is stable when VDHomo>VDHet-VDHet*VDHet

#Only non-Medea alleles in the population

#If VDHet<1, this equilibrium is stable.

#If VDHet=1, linear analysis is inconclusive.

#All 3 genotypes in the equilibrium population
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(85)(85)

(37)(37)

(87)(87)

(80)(80)

(92)(92)

(71)(71)

(91)(91)

(88)(88)

(89)(89)

(82)(82)

(86)(86)

(84)(84)

(81)(81)

(65)(65)

(54)(54)

(23)(23)

(83)(83)

(90)(90)

0.16

0.06250000000

#Solution is not when feasible VDHomo<VDHet(1-VDHet).

#Transitions not in biologically relevant space.

#Now look at stability
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(37)(37)

(80)(80)

(92)(92)

(71)(71)

(65)(65)

(54)(54)

(94)(94)

(93)(93)

(23)(23)

#To be unstable, the modulus of the eigenvalues have to be >1.  

We find when they are equal to 1.

#The only solution that has solutions in the biologically 

feasible range is VDHomo=VDHet-VDHet^2.

1.089675829
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(37)(37)

(95)(95)

(80)(80)

(92)(92)

(71)(71)

(65)(65)

(54)(54)

(23)(23)

#VDHomo<VDHet-VDHet*VDHet is not feasible.

#VDHomo>VDHet-VDHet*VDHet is not stable.

#No new criteria

#Case t1 varies, VEHomo=VEHet^2, Parental 

fitnesses=1
#We begin by introducing the simplifications

#Solve for the 4 biologically relevant equilibria
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(99)(99)

(37)(37)

(98)(98)

(103)(103)

(80)(80)

(92)(92)

(96)(96)

(71)(71)

(97)(97)

(101)(101)

(100)(100)

(65)(65)

(54)(54)

(102)(102)

(23)(23)

#The equilibrium with only Medea 

homozygous individuals 

#Check the stability of only Medea homozygous equilibrium

1.187500000

0.7222222222

#When VEHet less than 1-.5*t1, the equlibrium is not stable.  

The equilibrium is stable VEHet>1-.5*t1 and analysis is 

inconclusive at the equality.

#The equilibrium with homozygous and heterozygous 

Medea individuals
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(37)(37)

(107)(107)

(108)(108)

(80)(80)

(92)(92)

(71)(71)

(109)(109)

(104)(104)

(65)(65)

(54)(54)

(106)(106)

(23)(23)

(105)(105)0.3434604954

1.430500874

#This equilibrium is only biologically feasible when VEHet<=1-

(1/2)t1.

#Plot indicates solutions when VEHet<0 for 0<t1<1

#Plot indicates solutions when VEHet<0 for 0<t1<1
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(37)(37)

(80)(80)

(92)(92)

(71)(71)

(104)(104)

(110)(110)

(65)(65)

(54)(54)

(111)(111)

(23)(23)

t1
0 1

VEHet

0

1

#This solution is biologically relevant.

#This solution is biologically relevant.
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(37)(37)

(115)(115)

(80)(80)

(92)(92)

(71)(71)

(112)(112)

(104)(104)

(65)(65)

(113)(113)

(54)(54)

(114)(114)

(23)(23)

##This solution is not biologically relevant.

#This solution is biologically relevant.

Error, invalid subscript selector

#No more solutions.

#No additional boundaries from the second eigenvalue

#Now I plot all biologically relevant solutions below

#We now rewrite all biologically relevant boundary conditions as

functions of t1.
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(37)(37)

(80)(80)

(92)(92)

(71)(71)

(104)(104)

(65)(65)

(54)(54)

(23)(23)

Warning, unable to evaluate 2 of the 6 functions to numeric 

values in the region; see the plotting command's help page to 

ensure the calling sequence is correct

t1
0 1

VEHet

0

1

#The red curve is 1/(2t1).

#The gold curve is 1-(1/2)t1.

#The blue curve is 1/4 (1-2t1 + sqrt(1+4t1))/t1.

#The green curve corresponds to the first solution of the 

possibleSolutions variable.
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(37)(37)

(123)(123)

(92)(92)

(71)(71)

(124)(124)

(54)(54)

(119)(119)

(23)(23)

(120)(120)

(121)(121)

(80)(80)

(117)(117)

(118)(118)

(104)(104)

(116)(116)

(65)(65)

(122)(122)

#The warning occurs because the other solutions of the 

possibleSolutions curves lie outside the biologially relevant 

(plotted range).

#We now test points within each region.

0.05291146688

0.4484026267

0.5477261196

#The gold line defines the region of infeasibility.  Points 

above the line are not feasible.  Points below are feasible. 

#The red curve is irrelevant because it is in the region of 

biological infeasibility.

#Points above the blue line are stable (modulus of all 

eigenvalues is less than 1) and points below the blue line are 

not stable (modulus of at least one eigenvalue greater than 1).

The green line corresponds to points with a modulus of 1 but 

does not correspond to changes in stability.

#The equilibrium with only non-Medea individuals 
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(130)(130)

(37)(37)

(92)(92)

(71)(71)

(128)(128)

(124)(124)

(54)(54)

(131)(131)

(23)(23)

(125)(125)

(127)(127)

(80)(80)

(126)(126)

(129)(129)

(104)(104)

(65)(65)

#If VEHet<1, this equilibrium is stable.

#If VEHet=1, linear analysis is inconclusive.

#All 3 genotypes in the equilibrium population

#We find where this equilibrium is biologically feasible

0.1463035073

0.0004404844116

0.4297549764

#This equilibrium only exists when VEHet>=boundary1.

#The VEHet+1/VEHet boundary causes t1>1, therefore it is not 
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(135)(135)

(37)(37)

(134)(134)

(80)(80)

(92)(92)

(136)(136)

(71)(71)

(124)(124)

(132)(132)

(104)(104)

(65)(65)

(54)(54)

(133)(133)

(23)(23)

biologically relevant.

#This is the same boundary as discovered with Gpp=0;

#Moving on to stability
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(37)(37)

(80)(80)

(92)(92)

(136)(136)

(137)(137)

(71)(71)

(124)(124)

(139)(139)

(104)(104)

(138)(138)

(65)(65)

(54)(54)

(23)(23)

#This boundary condition is identical to the boundary that 

seperates biologically relevant and irrelevant boundaries.  

#The second eignvalue shows the equilibrium is unstable in the 

feasible region.  

#We now look for stability boundaries with the second 

eigenvalue.
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(37)(37)

(80)(80)

(92)(92)

(136)(136)

(71)(71)

(124)(124)

(139)(139)

(140)(140)

(104)(104)

(65)(65)

(54)(54)

(23)(23)

#No additional boundary conditions.

#Eigenvalue[2] is greater than 1 for biologically feasible 

parameter space.

#Eigenvalue[2] is equal to 1 when VEHet=1, therefore linear 

analysis is inconclusive
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(1)(1)

#Ward, Catherine 

#Supplemental Materials: Calculations for feasibility and 

stability of X-linked Medeas

We load the model and calculate equilibria and the eigenvalues 

of the Jacobian.  

#clear memory and initialize packages

#The following equations are for each genotype in the next 

generation

#We begin by defining intermediate quantities.

#The naming convention is slightly different in this file.  W is

still the divisor, but genotypes are now instead of using SM+, 

S++, DMM, DM+, and D++, we use HetM, WTM, HomoF, HetF, and WTF. 

Note that F at the end means female while M indicates male.  All

fitnesses are embryonic and we simply use V and V^2.

#Now make non-Medea (wildtype) females

#Now all genotypes

#Solve for all the equilibria (takes about 30 secs on a PC with 

2 gigs of RAM)
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(5)(5)

(1)(1)

(2)(2)

(3)(3)

(4)(4)

#Note that when V>.5, HetF is negative (biologially infeasible).

#Warning: this equilibrium takes a few seconds to load (PC with 

2 gigs of RAM).  Output is supressed because expressions for the

equilibrium fill about 200 pages of output.

#Now we move on to stability.  Recall that if the modulus of any

the eigenvalues of the Jacobian evaluated at a particular 

equilibrium is greater than 1, the equilibrium is unstable.

#Calculate the Jacobian Matrix

#Check stability of Medea Homozygote only equilibria

#When V<.5, this eqilibrium is unstable.  When V>.5, it is 

stable.

#Check stability of no non-Medea (has hets and homozygotes)
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(5)(5)

(1)(1)

(6)(6)

#When V is less than 0.5, this equilibrium is stable.  It is not

biologically feasible V>.5.

#Check the stability of the all non-Medea equilibria

#The equilibria is stable except at V=1 where the analysis is 

inconclusive.

#Checks the stability of the all non-Medea equilibria

#Warning: this calculation takes a 5-10 mins on a PC with 2 gigs

of RAM.  Output is suppressed because the expressions have 

several pages worth of terms.

#  Instead of solving for the modulus=1, we plot each modulus of

the 4 eigenvalues for the all non-Medea equilibrium.  Only three

appear on the graph because the modulus of one of the 

eigenvalues is 0 for all values of V.  Recall that if any 

eigenvalue is greater than 1, the equilibrium is unstable.  

Ward et al 52



(5)(5)

(1)(1)

V
0 1

ModOfEigenvalues

0

1

2

#Because the modulus of one of the eigenvalues is greater than 1

for all values of V, except V=1, the equilibrium is unstable.
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Figure S1

A B

DeFinetti diagrams showing genotype trajectories for a Medea with a fitness cost. (A) The DeFinetti diagram plots 
the change in genotype frequencies over generations for a Medea with a 20% embryonic, multiplicative fitness 
cost, and values of t =0 and t =1.  Population trajectories start with different ratios of two of the three genotypes 
(genotypes corresponding to points along each of the sides of the triangle). Green lines show trajectories that 
end at 2/3 Medea homozygotes, 1/3 Medea heterozygotes and no non-Medea individuals, the SIEAF (the stable 
internal equilibrium allele frequency). Red lines indicate population trajectories that end with loss of Medea 
individuals from the population. The unstable internal equilibrium frequency (UIEAF) is a point on the common 
trajectory taken by Medea-bearing populations that separates populations in which Medea spreads from those in 
which Medea is lost. (B) Plot of genotype frequencies over four generations for the Medea allele in (A), introduced 
into a population at a number of different starting genotype frequencies (black circles). When adults from within 
the G  genotype distributions (each of the black circles) mate randomly with each other, a range of possible G 
genotype distributions, indicated by the green region, is obtained.  When adults from G  genotype distributions 
mate randomly, a set of possible G  offspring genotype distributions defined by the red region is obtained; mat-
ings within each G  genotype distribution result in the set of possible G   offspring distributions defined by the 
yellow region; and G  matings result in the G  (blue) distribution. The G  distribution, which is highly constrained, 
can be used to approximate genotype frequencies and allele fitness for specific Medea allele frequencies.

1 1
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1

2

2 3

3 4 4
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Figure S2

Diagrams partitioning (V     , V        ) fitness parameter space into regions in which linear stability analysis 
indicates qualitatively similar behaviors are observed. (A) Parameter space diagram of (V      , V          ) space 
(this diagram is identical for a Medea with embryonic fitness cost) . Qualitative behavior changes as each 
curve is crossed, with the occurrence of a bifurcation.  Equilibrium 1, which consists of only the non-Medea 
genotype, is stable in all regions except at line a where the analysis is inconclusive.  Equilibrium 2, which 
consists of all genotypes, is unstable in regions A and B and infeasible in C.  Equilibrium 3, which consists of 
heterozygous and homozygous Medea, is infeasible in A, stable in B and unstable in C.  Equilibrium 4, 
which consists of only the homozygous Medea genotype, is stable in A and unstable in B and C. Line a 
corresponds to a region in which Equilibrium 1 and 2 are coincident.  Line b separates regions A and B. On 
this line, Equilibrium 3 and 4 are coincident. Transcritical bifurcation occurs as Equilibrium 3 moves 
through Equilibrium 4 (i.e. the two collide), with the two equilibria exchanging stability.  Curve c separates 
regions B and C. On this curve, Equilibrium 2 and 3 are coincident. Transcritical bifurcation occurs as the 
two equilibria collide, with the two equilibria exchanging stability.  (B) Parameter space diagram of (V        , 
V          ) space.  Explanations are as in (A).
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Figure S3
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(A) Diagram partitioning (t  , V      ) parameter space into regions in which linear stability analysis 
indicates qualitatively similar behaviors are observed. Qualitative behavior changes as we cross 
each of these curves, with the occurrence of a bifurcation.  Black lines partition parameter space 
for Medea elements with a parental fitness costs.  Equilibrium 1, which consists of only the non-
Medea genotype, is stable in all regions.  Equilibrium 2, which consists of all genotypes, is unstable 
in regions A and B and infeasible in C.  Equilibrium 3, which consists of heterozygous and homozy-
gous Medea genotypes, is infeasible in C, stable in A and unstable in B.  Equilibrium 4, which 
consists of only the homozygous Medea genotype, is stable in B and unstable in A and C. Line a 
corresponds to a Medea with no fitness cost.  At line a, the stability of equilibrium 1, the all non-
Medea equilibrium, is inconclusive.  Line b separates regions A and B. On this line, Equilibrium 3 
and 4 are coincident. Transcritical bifurcation occurs as Equilibrium 3 moves through Equilibrium 
4 (i.e. the two collide), with the two equilibria exchanging stability.  Curve c separates regions A 
and C. On this curve, the Equilibrium 2 and 3 are coincident.   (B) As in (A) except fitness costs are 
maternal.
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