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Mosquito-borne diseases such as malaria and dengue fever pose a major health problem through much

of the world. One approach to disease prevention involves the use of selfish genetic elements to drive

disease-refractory genes into wild mosquito populations. Recently engineered synthetic drive systems

have provided encouragement for this strategy; but at the same time have been greeted with caution

over the concern that transgenes may spread into countries and communities without their consent.

Consequently, there is also interest in gene drive systems that, while strong enough to bring about local

population replacement, are unable to establish themselves beyond a partially isolated release site, at

least during the testing phase. Here, we develop simple deterministic and stochastic models to compare

the confinement properties of a variety of gene drive systems. Our results highlight several systems

with desirable features for confinement—a high migration rate required to become established in

neighboring populations, and low-frequency persistence in neighboring populations for moderate

migration rates. Single-allele underdominance and single-locus engineered underdominance have

the strongest confinement properties, but are difficult to engineer and require a high introduction

frequency, respectively. Toxin–antidote systems such as Semele, Merea and two-locus engineered under-

dominance show promising confinement properties and require lower introduction frequencies. Killer-rescue

is self-limiting in time, but is able to disperse to significant levels in neighboring populations. We discuss the

significance of these results in the context of a phased release of transgenic mosquitoes, and the need for

characterization of local ecology prior to a release.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Mosquito-borne diseases such as dengue fever, chikungunya
and malaria continue to pose a major health problem through
much of the world. Treatments for dengue fever and chikungunya
remain elusive, and malaria is proving exceptionally difficult to
control in highly endemic areas with insecticide-treated nets,
indoor residual spraying and antimalarial drugs (Griffin et al.,
2010; WHO, 2010). The failure of currently available methods to
control these diseases has renewed interest in approaches to
disease prevention that involve the use of gene drive systems to
spread disease-refractory genes into wild mosquito populations
(Alphey et al., 2002; Marshall and Taylor, 2009). Such strategies
are attractive because they are self-perpetuating and are expected
to result in disease suppression far beyond the release site.
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A number of gene drive systems have been proposed, includ-
ing naturally occurring selfish genetic elements such as transpo-
sable elements (TEs), post-meiotic segregation distorters, Medea

elements, homing endonuclease genes (HEGs), and the intracel-
lular bacterium Wolbachia (Braig and Yan, 2001; Gould and
Schliekelman, 2004; Sinkins and Gould, 2006). Another set of
approaches to bringing about population replacement involves
creating insects in which genes of interest are linked to engi-
neered chromosomes: compound chromosomes or translocations
(Curtis, 1968; Foster et al., 1972), or pairs of unlinked lethal genes,
each of which is associated with a repressor of the lethality
induced by expression of the other lethal gene—a system known
as engineered underdominance (Davis et al., 2001; Magori and
Gould, 2006).

An essential feature of population replacement is the ability
of released transgenic insects to spread disease-refractory genes
through a wild population on a human timescale. The observation
that several naturally occurring selfish elements have spread over
wide geographical areas – a TE in Drosophila melanogaster (Kidwell,
1983), Wolbachia in Drosophila simulans (Turelli and Hoffmann,
1991), and Medea in Tribolium (Beeman and Friesen, 1999;
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Lorenzen et al., 2008) – provides encouragement for this strategy.
However, these observations also highlight the potential for gene
drive systems to spread transgenes into countries before they have
agreed to their introduction (Knols et al., 2007). The Cartagena
Protocol – the United Nations protocol on the international move-
ment of genetically modified organisms (GMOs) – is prohibitive of a
release of GMOs capable of self-propagating across national borders
in the absence of a multilateral international agreement (Marshall,
2010). It also allows nations to decide for themselves how they would
like to regulate the import of GMOs.

The movement of mosquitoes carrying transgenes also
requires consideration at the community level. A recent survey
of public attitudes to a release of malaria-refractory mosquitoes
in Mali suggests that a small number of people would be happy
for the first release to be conducted in their community; however,
most people would first like to see the results of a release in an
isolated community where malaria prevalence has been shown to
decrease in the absence of side-effects (Marshall et al., 2010).
These regulations and societal views highlight the importance of
confining the first releases of transgenic mosquitoes to isolated
locations, particularly when gene drive systems are involved. This
is in agreement with the principle of scientific risk management,
which recommends that the magnitude of potential risks be mini-
mized by spatially limiting the release and providing mechanisms
for removal of transgenes in the event of adverse effects (Beech
et al., 2009).

Consequently, the strategy of population replacement is left with
two competing mandates, at least during the testing phase. Trans-
genes must be able to spread to high frequencies locally, in order to
provide an adequate test of the technology’s ability to prevent
disease (Boete and Koella, 2002; Boete and Koella, 2003); but they
must not spread to significant levels in neighboring populations. The
use of trap crops, vegetation-free zones and spatial isolation have
been discussed in the context of confining an accidental release of
transgenic mosquitoes from field cages (Benedict et al., 2008).
Additionally, studies of mosquito ecology on islands off the coast
of Africa have begun with an isolated transgenic release in mind
(Pinto et al., 2003). These safeguards are effective at reducing the
migration rate of mosquitoes to nearby locations; however, a small
number of escapees are inevitable and, if these escapees carry
invasive gene drive systems, this may be sufficient for transgenes
to spread beyond their release site. The release of mosquitoes
carrying only transgenes conferring disease refractoriness has been
proposed (Benedict et al., 2008) and is an important step towards
assessing the behavior of the refractory gene in the wild. However,
gene drive systems will ultimately be required to achieve the
transgenic frequencies necessary for disease control without prohi-
bitive release sizes.

Underdominant systems provide a potential solution to these
competing mandates (Altrock et al., 2010). The mosquito species
that transmit human diseases are largely anthropophilic, forming
subpopulations around human settlements as discrete blood
sources (Service, 1993). Abstract two-population models have
shown that an underdominant allele can become established in
one population while persisting in a neighboring population at
low frequencies provided that the migration rate between popu-
lations is sufficiently low and the strength of selection against
heterozygotes is sufficiently strong (Karlin and McGregor, 1972;
Lande, 1985; Altrock et al., 2010). The single underdominance
allele described in these models is particularly difficult to engi-
neer; however several genetic systems displaying similar proper-
ties have been proposed, including translocations (Curtis, 1968),
engineered underdominance (Davis et al., 2001), and a variety of
single-locus toxin–antidote systems such as Semele (Marshall
et al., 2011), inverse Medea (Marshall and Hay, 2011a) and Medea

with a recessive antidote (Merea).
A proper assessment of the ability to confine these systems to
discrete populations will require a detailed ecological analysis,
taking into account phenomenological features of the mosquito
populations of interest – including seasonally fluctuating population
sizes and migration rates as well as seasonally varying chromosomal
form and species make-ups (Lanzaro et al., 1998; Taylor et al., 2001;
Tripet et al., 2005). The present analysis, however, focuses on a
comparison of the gene drive systems currently being considered,
and their relative ability to be confined to partially isolated popula-
tions. For the purposes of comparison, we consider the simplest
possible model of population structure—a two-population model in
which mosquitoes with gene drive systems are introduced into one
population, which exchanges migrants with a neighboring popula-
tion. This differs from the analysis of Marshall (2009), which uses a
branching process framework to compare the ability of gene drive
systems to persist in the environment following an accidental
release from a contained facility. Here, we use a simple difference
equation framework to see whether there is a realistic set of
parameters for which a transgene can become established at its
release site without spreading into neighboring populations. We
discuss the relevance of these findings to a phased release of
transgenic mosquitoes intended for the control of vector-borne
diseases, and to the strategy of population replacement in general.
2. Model development

We use two modeling frameworks to compare the degree to
which mosquitoes engineered with various gene drive systems
can be confined to their release site. First, we consider a source
model in which transgenic mosquitoes have already reached
equilibrium in population A, and population A donates a fraction,
m, of its population to population B at each generation (Fig. 1A).
We include this model for its analytic tractability, and because it
provides a good first approximation of a model in which migra-
tion occurs in both directions. Second, we consider a metapo-
pulation model consisting of two populations, each of which
exchanges a fraction, m, of its population with the other at each
generation (Fig. 1B). The transgenic mosquitoes are introduced
into population A, while population B initially consists of wild-
types. In both cases, we assume discrete generations and random
mating. The inheritance pattern of each gene drive system is then
used to calculate genotype frequencies in the next generation for
both populations.

We illustrate these two models, using Medea as a case study, in
the following section. We then adapt these models to incorporate
the inheritance patterns of invasive gene drive systems (Section 4)
such as HEGs (Deredec et al., 2008), TEs (Charlesworth et al.,
1994) and Wolbachia (Turelli and Hoffmann, 1999); underdomi-
nant systems (Section 5) such as translocations (Curtis, 1968),
engineered underdominance (Davis et al., 2001) and an under-
dominant allele (Altrock et al., 2010); other non-invasive systems
(Section 6) such as Semele (Marshall et al., 2011), inverse Medea

(Marshall and Hay, 2011a) and Merea (Marshall, 2011); and killer-
rescue (Section 7; Gould et al., 2008). Finally, we adapt the two-
population model to account for a series of five populations to
monitor the spread of a gene drive system beyond an immedi-
ately neighboring population.
3. Medea

Medea elements spread through natural populations by caus-
ing the death of all offspring of heterozygous females that do not
inherit the allele (Beeman et al., 1992; Wade and Beeman, 1994).
Synthetic Medea elements have been engineered in Drosophila by



Fig. 1. Dynamics of Medea under the source and two-population models. (A) In the source model, we assume that transgenic mosquitoes have already reached equilibrium

in population A. Population A remains at equilibrium and donates a fraction, m, of its population to population B at each generation. (B) In the two-population model, each

population exchanges a fraction, m, of its population with the other at each generation. Transgenic mosquitoes are introduced into population A. Population B is initially

wild-type. (C) Medea is comprised of two genes—a maternal toxin and zygotic antidote. The expression of these genes renders wild-type offspring of heterozygous females

unviable. (D): Single stochastic realization of a Medea element released at 50% (in the form of Medea homozygotes) in population A. Population A exchanges migrants

with population B at a rate of 1% per generation and the size of both populations is 10,000. The Medea construct is associated with a fitness cost of s¼0.05 (h¼0.5).

Medea-bearing genotypes fix in both populations within 27 generations. (E) The element is associated with a fitness cost of s¼0.5 (h¼0.5). Medea reaches near-fixation in

population A within 20 generations, but only spreads to �4.7% (in the form of Medea homozygotes and heterozygotes) in population B. (F) Medea displays threshold

behavior with respect to migration rate. For a given fitness cost, there is a migration rate above which Medea fixes and below which it merely persists at a low level in

population B. (G) Medea persistence in population B depends on migration rate between the two populations. (H) In stochastic systems, there is a chance that Medea will

become established in population B even when the migration rate is below the deterministic threshold. We define the stochastic threshold as the migration rate above

which the probability that the element becomes established in the neighboring population (i.e. spreads to a transgenic frequency above 90%) within 1000 generations is

greater than 0.1%.
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linking a maternally expressed toxin with a zygotic antidote
(Fig. 1C), and have been shown to drive population replacement
in laboratory cage populations (Chen et al., 2007). We consider a
Medea element as a single allele, which we denote by ‘‘M,’’ and
refer to the absence of the Medea allele at the corresponding locus
as ‘‘m.’’ In population A, the proportion of the kth generation that
are mosquitoes of genotypes mm, Mm and MM are denoted by
uA,k, vA,k and wA,k, respectively. The corresponding proportions for
population B are uB,k, vB,k and wB,k.

We begin by considering the population dynamics of the
Medea allele without migration, assuming random mating and
infinite population size (Ward et al., 2010). By considering all
possible mating pairs, and by taking into account that wild-type
offspring of heterozygous mothers are unviable, the genotypes of
embryos in the next generation in population A are described by
the ratio ûA,kþ1 : v̂A,kþ1 : ŵA,kþ1, where,

ûA,kþ1 ¼ u2
A,kþ0:5uA,kvA,k, ð1Þ

v̂A,kþ1 ¼ 2uA,kwA,kþ0:5v2
A,kþuA,kvA,kþwA,kvA,k, ð2Þ

ŵA,kþ1 ¼w2
A,kþwA,kvA,kþ0:25v2

A,k: ð3Þ

Here, we have assumed 100% toxin efficiency, which has been
achieved by Chen et al. (2007). Normalizing these ratios and
taking into account fitness costs, the genotype frequencies in the
next generation are given by

uA,kþ1 ¼ ûA,kþ1=WA,kþ1, ð4Þ

vA,kþ1 ¼ v̂A,kþ1ð1�hsÞ=WA,kþ1, ð5Þ

wA,kþ1 ¼ ŵA,kþ1ð1�sÞ=WA,kþ1: ð6Þ

Here, s and hs represent the fitness costs associated with being
homozygous or heterozygous for the element, and WA,kþ1 is a
normalizing term given by

WA,kþ1 ¼ ûA,kþ1þ v̂A,kþ1ð1�hsÞþŵA,kþ1ð1�sÞ: ð7Þ

Analogous equations apply to population B.
3.1. Source model

For the source model, we begin by assuming that the trans-
gene has already reached equilibrium in population A, ignoring
migratory effects. We calculate this equilibrium by solving the
equality

ðuA,kþ1,wA,kþ1Þ ¼ ðuA,k,wA,kÞ ¼ ðuA,n ,wA,n Þ ð8Þ

and choosing the stable equilibrium with the highest transgenic
allele frequency. To determine whether the equilibrium is stable
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or not, we calculate the eigenvalues of the Jacobian matrix

@ukþ 1

@uk

@ukþ 1

@wk

@wkþ 1

@uk

@wkþ 1

@wk

0
@

1
A
������
ðuk ,wkÞ ¼ ðun ,wnÞ

: ð9Þ

The equilibrium is locally stable if all eigenvalues have
modulus less than one, and is unstable if one or more of the
eigenvalues have modulus greater than one (Elaydi, 1995).
Otherwise, the analysis is inconclusive. For simplicity, let us
assume a fitness cost with a heterozygosity of h¼0.5. This allows
us to describe the dynamics of the Medea allele by a single
parameter—the homozygous fitness cost, s. Solving the equality
in Eq. (8) then gives us four solutions,

ðuA,n ,wA,n Þ ¼ ð0,1Þ,ð1,0Þ,ð0,1�sÞ,
4þsðs�6Þ

4�2s
,

s2

4�2s

� �� �
: ð10Þ

The first of these represents fixation, the second represents
loss, the third represents a mixture of heterozygotes and homo-
zygotes, and the fourth represents a mixture of all three geno-
types. Calculating the stabilities of these equilibria, we see that
loss is stable, fixation is stable in the absence of a fitness cost and
unstable in the presence of a fitness cost, and the third equili-
brium is stable for fitness costs less than 3�

ffiffiffi
5
p

and unstable for
fitness costs greater than 3�

ffiffiffi
5
p

. The fourth equilibrium is only
biologically relevant for fitness costs less than 3�

ffiffiffi
5
p

and is
unstable over this entire range. This latter solution represents
one of a family of threshold points for fitness costs less than
3�

ffiffiffi
5
p

(0.764), above which the Medea allele spreads to an
equilibrium frequency of (uA,*,wA,*)¼(0.1�s), and below which it
is lost.

We assume a fitness cost of less than 0.764 and a super-
threshold release in population A, leading to the following
genotype equilibrium in the source population,

ðuA,wAÞ ¼ ð0,1�sÞ: ð11Þ

Ignoring migratory effects in the source population, this
equilibrium is maintained and population A donates mosquitoes
with this set of genotype frequencies to population B at a rate, m,
measured relative to the size of population B. This allows us to
calculate the genotype frequencies in population B analogously to
those in population A with a constant influx of homozygotes at
a rate of wAm¼(1�s)m per generation, and a constant influx of
heterozygotes at a rate of vAm¼sm per generation. Eqs. (1)–(3)
remain unchanged for population B, and Eqs. (4)–(6) become

uB,kþ1 ¼ ûB,kþ1=ðWB,kþ1þmÞ, ð12Þ

vB,kþ1 ¼ ðv̂B,kþ1ð1�hsÞþsmÞ=ðWB,kþ1þmÞ, ð13Þ

wB,kþ1 ¼ ðŵB,kþ1ð1�sÞþð1�sÞmÞ=ðWB,kþ1þmÞ: ð14Þ

The normalizing term, WB,kþ1, is equivalent to that in Eq. (7).
We are interested in the frequency that the introduced allele

reaches in population B, as a function of its fitness cost and
immigration rate. Most of all, we are interested in the conditions
under which the allele can spread in population A without
spreading into population B. To characterize the dynamics of
the Medea allele in population B, we begin by calculating its
equilibria by solving the equality,

ðuB,kþ1,wB,kþ1Þ ¼ ðuB,k,wB,kÞ ¼ ðuB,n,wB,nÞ: ð15Þ

This gives us five solutions,

ðuB,n,wB,nÞ ¼

ð0,7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4m

p
Þ,ð0,1�sÞ,

74zð1þmÞþð885zþ2mð48zÞÞs�ð248zþ24mÞs2

þð25þ26mÞs3�2ð5þ6mÞs4þð1þ2mÞs5

� �
2sð2�sð3�sÞÞð2ð1þmÞ�sð2þmÞÞ ,

sð1�sÞðs�2mð2�sÞÞ8 z
2ð2�sÞð2ð1þmÞ�sð2þmÞÞ

0
B@

1
CA

8>>>><
>>>>:

9>>>>=
>>>>;

ð16Þ
where z¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ð1�sÞ2ðs2�4mð2�sÞ2Þ

q
. The first two of these (the

upper and lower signs of the first entry) are not biologically
relevant, the third represents a mixture of homozygotes and
heterozygotes, and the fourth and fifth represent a mixture of
all genotypes. Calculating the stabilities of these equilibria, we see
that equilibrium three is stable, and the fourth and fifth equilibria
only exist when mrs2=ð4�2sÞ2. If this condition is satisfied, then
the fourth equilibrium (the upper sign of the third entry) is stable
and the fifth equilibrium (the lower sign) is unstable. The location
and stability of the three biologically relevant equilibria suggests
that, if the immigration rate is greater than s2=ð4�2sÞ2, then the
Medea element will reach the same prevalence in population B as
in the source population; but if the immigration rate is smaller
than s2=ð4�2sÞ2, then the Medea element will persist in popula-
tion B at a low level. In summary,

ðuB,n,wB,nÞ ¼

4zð1þmÞþð8�5zþ2mð4�zÞÞs�ð24�zþ24mÞs2

þð25þ26mÞs3�2ð5þ6mÞs4þð1þ2mÞs5

� �
2sð2�sð3�sÞÞð2ð1þmÞ�sð2þmÞÞ ,

sð1�sÞðs�2mð2�sÞÞ�z
2ð2�sÞð2ð1þmÞ�sð2þmÞÞ

0
B@

1
CA

ð0,1�sÞ,m4 s2

ð4�2sÞ2

8>>>>><
>>>>>:

mr s2

ð4�2sÞ2
: ð17Þ

The expression, s2=ð4�2sÞ2, therefore represents a migration
threshold for Medea under the source model—above this migra-
tion rate, the Medea allele spreads into population B; and below
this migration rate, the Medea allele persists at a low level in
population B. To put this expression into perspective, in the
absence of a fitness cost, the migration threshold is 0; with a
fitness cost of s¼0.05, the migration threshold is 0.016% per
generation; and with a fitness cost of s¼0.5, the migration
threshold is 2.8% per generation. Inter-village migration rates
have been estimated at �0.8% per generation for rural villages
7 km apart in Mali, West Africa (Taylor and Manoukis, 2003);
although the initial sites for an open release of transgenic
mosquitoes with gene drive systems are likely to be more isolated
than this. We use 1% per generation as a conservative estimate
of the migration rate between a release site and neighboring
population.

With the above migration rates in mind, the source model
predicts that Medea is very capable of spreading from one village
to another in the presence of a small fitness cost. In the presence
of a large fitness cost, Medea may be confined to its release site –
e.g. for a fitness cost of s¼0.5 and a default migration rate (1% per
generation), Medea allele frequency is only expected to reach 3.3%
in population B – however, large fitness costs are unlikely to be
relied upon for achieving confinement and are included here for
illustrative purposes only. Catteruccia et al. (2003) estimate a
fitness cost due to the insertion and/or expression of a transgene
in Anopheles mosquito lines to be less than s¼0.2; however,
fitness effects are expected to be transgene and insertion site-
specific (Catteruccia et al., 2003) and may also evolve over time,
causing them to be a particularly unreliable mechanism for
achieving confinement.
3.2. Two-population model

We now move onto a model in which migration is explicitly
two-way, i.e. the mating pool in both populations is made up of
individuals from both populations. For a migration rate of m in
both directions, this means that we need to make the following
substitutions in the equations describing population A,

ðuA,k,vA,k,wA,kÞ’ðuA,k,vA,k,wA,kÞð1�mÞþðuB,k,vB,k,wB,kÞm: ð18Þ
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Applying these substitutions to Eq. (1), for illustrative pur-
poses, we obtain,

ûA,kþ1 ¼ ½uA,kð1�mÞþuB,km�2þ0:5½uA,kð1�mÞ
þuB,km�½vA,kð1�mÞþvB,km�: ð19Þ

These substitutions also apply to Eqs. (2)–(3); while Eqs. (4)–(7)
are unchanged. Analogous substitutions apply to population B.
Considering a release in population A at generation 0, the initial
condition for the difference equations is given by

ðuA,0,wA,0Þ ¼ ð1�x,xÞ, ð20Þ

ðuB,0,wB,0Þ ¼ ð1,0Þ: ð21Þ

Here, the released mosquitoes represent a proportion, x, of
population A at the time of release. Using this initial condition
and the difference equations described above, we can calculate
the time-series dynamics of the Medea allele in both populations
through numerical iteration (analytic solutions are too complex to
be useful).

A stochastic version of this model can be computed by calculat-
ing the expected genotype frequencies as previously described and
then sampling a total of N individuals from a multinomial distribu-
tion parameterized by these frequencies (here, N represents the
population size of reproducing adults). The multinomial sampling
procedure is outlined in the Supplemental material, Section 1. This
approach is justified because insect species tend to produce a large
number of offspring per adult; however the environment can only
sustain a limited number of individuals (Service, 1993) leading to a
situation in which individuals are essentially sampled from a larger
population at each generation. Stochastic systems capture some of
this randomness and, consequently, do not display clear threshold
behavior—an allele may spread to fixation if it is released at
sub-threshold levels according to a deterministic model; however,
the probability that it fixes will tend to be low and depend on the
population size, N. We consider a default population size of 10,000;
but also consider smaller populations of 100 and 1000 individuals.

3.3. Results

Fig. 1D, E depicts single stochastic realizations of the two-
population model of Medea spread with a population size of
10,000. A construct with a fitness cost of s¼0.05 with hetero-
zygosity h¼0.5 released in population A fixes in both populations
(Fig. 1D); however, the same construct with a fitness cost of
s¼0.5 only establishes itself in population A (Fig. 1E). The two-
population and source models both display threshold behavior
with respect to migration rate; however, migration thresholds are
slightly higher under the two-population model (Fig. 1F). This
is due to the fact that, in the two-population model, prior to
population replacement, incoming wild-type mosquitoes reduce
the Medea allele frequency in population A, thus reducing the
migration rate of mosquitoes having the Medea allele into
population B. For the same reason, the Medea allele persists at
slightly lower levels in population B under the two-population
model (Fig. 1G). Although migration thresholds exist, they are
unrealistically low for realistic fitness costs. This suggests that
Medea is not confinable to its release site under these simple
models.

It is worth noting that the migration thresholds in Fig. 1F
correspond to deterministic versions of both the two-population
and source models. Migration thresholds are less meaningful for
stochastic versions of these models—for the source model, any
migration will always lead to fixation in population B, eventually;
and for the two-population model, the allele will ultimately be
fixed or eliminated from both populations; however, the time
taken to reach these absorbing states may be very long. For all
practical purposes, migration thresholds do exist for stochastic
models on a human timescale; however the stochastic thresholds
are slightly lower because chance events make it easier for the
Medea allele to cross the deterministic threshold above which it
will be favored in population B.

We define the stochastic threshold for the two-population
model as the migration rate above which the probability that the
element becomes established in the neighboring population (i.e.
spreads to a transgenic frequency above 90%) within 1000
generations is greater than 0.1%. The stochastic threshold is
dependent on population size, and we calculate this for popula-
tions having 100, 1000 and 10,000 individuals. For the two-
population model, a construct with a fitness cost of s¼0.5 with
heterozygosity h¼0.5 has a deterministic migration threshold of
4.0% per generation; however this decreases to �3.2% per gen-
eration for populations having 1000 mosquitoes in each village
and to �0.9% per generation for a populations of 100 mosquitoes
(Fig. 1H). This threshold difference is an important consideration
to keep in mind for all of the gene drive systems analyzed in this
paper since it highlights the potential for otherwise confineable
systems to spread into small populations.
4. Other invasive gene drive systems

Medea is an invasive gene drive system in the sense that it is
predicted to spread into neighboring populations unless it is
associated with a very large fitness cost. Three other gene drive
systems that fall into this category are TEs, HEGs and Wolbachia.
We show that TEs are predicted to spread into neighboring
populations whenever they are capable of spreading at all. HEGs
are one of the most invasive of the gene drive systems being
considered, but can be confined if they are associated with a large
dominant fitness cost; and Wolbachia is predicted to be confine-
able for high fitness costs and/or low maternal transmission rates;
but under realistic parameterizations, it is predicted to spread
widely.

4.1. TEs

TEs are selfish genetic elements that are capable of transposing
replicatively within the genome and hence spreading into a
population from low initial frequencies (Charlesworth et al.,
1994; Fig. S1A). Their use as a gene drive system was inspired
by the observation that P elements spread through most of
the worldwide Drosophila melanogaster population within a few
decades (Kidwell, 1983). A number of models have been proposed
to model the spread of TEs through randomly mating populations
(Charlesworth and Charlesworth, 1983; Ribeiro and Kidwell,
1994; Marshall, 2008), all of which generally conclude that a TE
will spread into a population provided that its transposition rate
overcompensates for its associated fitness cost. The TE will then
reach an equilibrium copy number in the population due to a
number of mechanisms which slow down the rate of transposi-
tion with increasing copy number (Townsend and Hartl, 2000).
A TE may be lost in the early stages of spread (Le Rouzic and Capy,
2005; Marshall, 2009); however, this is unlikely to occur for a
TE intentionally introduced at high frequency at its release site,
with sustained migratory events introducing it into neighboring
populations.

We extend an existing model of TE spread (Marshall, 2009) to
account for migration from a source population and between two
connected metapopulations (Supplemental Material, Section 2).
The results suggest that, for default parameterizations (Table 1),
the TE is expected to spread from one population to another, and
to reach near-fixation in both populations within 100 generations



Table 1
Parameter values, definitions and source references.

Parameter Definition Default value References

m Migration rate 0.01/gen Taylor et al. (2001), Tripet et al. (2005)

N Population size 10,000

Medea, HEG, Semele, inverse Medea, Merea, extreme underdominance, engineered underdominance (single-locus, two-locus), translocations, killer-rescue

s Homozygous fitness cost (per locus) 0.05 Chen et al. (2007), Catteruccia et al. (2003)

h Heterozygosity of fitness cost 0.5

TE

u1 Replicative transposition rate 0.1/gen Seleme et al. (1999), Vasilyeva et al. (1999)

l Transpositional regulation parameter 1 Subramanian et al. (2007)

v Element deletion rate 4�10�6/gen Nuzhdin et al. (1997), Maside et al. (2000)

s Fitness cost per TE 0.01 Mackay et al. (1992)

HEG

e Homing rate 0.1/gen Deredec et al. (2008)

Wolbachia, bidirectional CI

u Degree of imperfection in maternal transmission 0.97 Turelli and Hoffmann (1999)

e Efficiency of CI-induced sterility 0.7

s Fitness cost of Wolbachia 0.05
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(Fig. S1B). If the transposition rate is decreased (Fig. S1C) or the
fitness cost is increased (Fig. S1D), the TE is still predicted to
spread into both populations for any nonzero migration rate;
however, if the fitness cost outweighs the transposition rate, the
TE is expected to be lost from both populations. This model does
not account for the tendency of TEs to jump locally (Tower et al.,
1993; Zhang and Spradling, 1993) and to home in on certain
genomic regions (Guimond et al., 2003); however this is not
expected to change the overall dynamics other than by reducing
the effective transposition rate (Rasgon and Gould, 2005). It also
does not account for evolutionary considerations such as muta-
tional inactivation (Struchiner et al., 2009); however, these
are less relevant on the timescale of a population replacement
program. The general conclusion therefore holds that any TE
capable of spreading is not confineable to an isolated population.

4.2. HEGs

HEGs, like TEs, are highly invasive genetic elements that are
difficult to confine to isolated populations. HEGs spread by
expressing an endonuclease which creates a double-stranded
break on versions of the homologous chromosome lacking the
HEG at the position where it occurs. Homologous DNA repair then
copies the HEG to the cut chromosome (Fig. S1E), increasing its
representation in subsequent generations. Strategies have been
proposed that utilize this property for either population suppres-
sion or replacement (Burt, 2003), and recent advances have been
made in the development of both (Windbichler et al., 2008;
2011). Here, we consider the strategy of population replacement,
which has been modeled by Deredec et al. (2008). The general
conclusion is that a HEG will spread provided that its homing rate
overcompensates for its fitness cost; however, for fitness costs
that are partially or fully dominant, there is a range of parameter
space for which the HEG displays threshold behavior—becoming
either fixed or lost depending on its initial frequency. Like a TE, a
HEG may be lost in the early stages of spread (Marshall, 2009);
however, this is unlikely for a HEG intentionally introduced into
the environment.

We extend the model of Deredec et al. (2008) to account for
migration from a source population and between two connected
metapopulations (Supplemental material, Section 3). The results
suggest that a HEG with additive fitness costs (h¼0.5) will spread
from one population to another provided that the initial
requirement for spread is satisfied, and the rate of spread will
be significantly quicker than that for TEs (Fig. S1F). However, for
partially or fully dominant fitness costs (h40.5), there are some
regions of parameter space over which the HEG is predicted to be
confineable to an isolated population (Fig. S1G, H). We include
this observation for completeness; however it is unlikely to be of
any practical use in terms of confinement because it requires that
fitness costs fall within a very small range (e.g. 0.53oso0.58 for
h¼0.75, e¼0.5 and m¼0.01), and fitness costs are both variable
and notoriously difficult to measure under field conditions. This
model does not account for the effects of gap repair with error-
prone non-homologous end joining, which can create chromo-
somes with sequence alterations that make the chromosome
resistant to further HEG invasion (Deredec et al., 2008). Further-
more, population suppression strategies utilizing HEGs display
unique dynamics that must be considered independently (Burt,
2003).

4.3. Wolbachia

Wolbachia, a maternally transmitted intracellular bacterium, is
able to spread through a population by causing host reproductive
alterations including cytoplasmic incompatibility (CI) (Stouthammer
et al., 1999), in which offspring of matings between infected males
and uninfected females result in the death of some or all progeny,
while matings involving infected females tend to produce infected
offspring (Fig. S1I). This behavior biases the offspring ratio in favor of
those carrying the Wolbachia infection, and Wolbachia is able to
spread rapidly through a population despite a fitness cost (Turelli
and Hoffmann, 1999). A recent environmental release of Wolbachia-
infected Aedes aegypti in Australia has been successful in replacing
the local wild population (Hoffmann et al., 2011) and corresponding
laboratory experiments suggest that the infected mosquitoes are
unable to transmit dengue serotype 2 (Walker et al., 2011). Like
Medea, Wolbachia is predicted to spread into neighboring popula-
tions, but can be confined to its release site in the presence of
inefficient transmission and/or a fitness cost (Flor et al., 2007). The
geographic spread of the Wolbachia-infected Ae. aegypti strain is
currently being assessed.

A number of models have been proposed to describe the spread
of Wolbachia through randomly mating (Hoffmann et al., 1990) and
spatially structured populations (Engelstadter and Telschow, 2009).
Most relevant to this study, Flor et al. (2007) modeled Wolbachia in
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a two-population model for both mainland-island and two-way
migration scenarios. Flor et al. (2007) concluded that infected and
uninfected populations can co-exist provided that the migration rate
between them is below a certain critical value; but that this value is
very low for reasonable parameter estimates. Jansen et al. (2008)
modeled the stochastic spread of Wolbachia in small populations
beginning from sub-threshold frequencies and found its fixation
probability to be significantly higher in small populations, some-
times exceeding that of a neutral allele. This suggests that, as for
Medea, there is a chance that Wolbachia will spread between
populations for migration rates smaller than the critical migration
rates calculated by Flor et al. (2007).

We extend the model of Flor et al. (2007) to account for
the stochasticity inherent in finite populations (Supplemental
material, Section 4). The results suggest that, for default para-
meters (Table 1), the deterministic migration thresholds are
unrealistically low (0.25% per generation), and are even lower
for small populations (0.055% per generation for 1000 individuals,
and 0% per generation for 100 individuals) (Fig. S1K–L). A
bacterium with a relatively large fitness cost (s¼0.2) is expected
to be confineable to large populations (1000–10,000 individuals)
(Fig. S1J–K); but has a 47.5% chance of spreading between
populations of 100 individuals. Life-shortening Wolbachia strains
are being considered for the control of dengue fever-transmitting
Ae. aegypti populations, and these strains are associated with
large reductions in host fitness (Yeap et al., 2010). However, it is
not clear that a Wolbachia-induced fitness cost can be relied upon
for confinement, since a Wolbachia infection in California Droso-

phila simulans populations has been observed to change over the
course of 20 years from inducing a fecundity cost in females, to
inducing a fecundity advantage (Weeks et al., 2007).

Alternative modeling approaches confirm the ability of
Wolbachia to spread despite a fitness cost. Turelli and Hoffmann
(1991) modeled the spread of Wolbachia through the California
D. simulans population as a ‘‘Bartonian wave’’ (Barton, 1979); and
Schofield (2002) extended this model to incorporate rare long-
range dispersal events which provide a better fit to the data.
Wade and Stevens (1994) modeled the structure of a population
by dividing it into a number of demes of finite size and modeling
dispersal and competition at the level of the population with
Table 2
Comparison of gene drive systems in terms confinement properties.a

Gene drive
system

Migration threshold
(% migrants/gen)
(source model)

Migration
threshold (%
migrants/gen)
(2-pop model)

Stochastic migration
threshold (% migrants/ge
(2-pop model, N¼100/10

Medea 0.017 0.018 0/0

HEG 0 0 0/0

TE 0 0 0/0

Wolbachia 0.24 0.25 0/0.055

Bidirectional CI 8.8 13.3 7.0/11.2

Translocations 4.3 – 2.7/6.0

Engineered

underdominance

(two-locus)

2.8 4.3 1.5/3.7

Engineered

underdominance

(single-locus)

17.0 – –/–

Extreme

underdominance

12.8 – 14.7/19.4

Semele 4.2 6.9 2.7/6.0

Inverse Medea 6.2 – 6.4/–

Merea 5.3 7.0 4.0/6.5

Killer-rescue 0 0 0/0

a Default parameter values are taken from Table 1.
b Initial prevalence in Population A is 100%.
mating taking place within demes. This resulted in CI spread, but
at a slower rate than in a panmictic population. Reuter et al.
(2008), on the other hand, modeled competition at the local level,
with a fraction of offspring dispersing from their natural deme.
This resulted in spread at a faster rate than in a panmictic
population. Under all scenarios, the qualitative conclusion
remains that Wolbachia is capable of spreading between popula-
tions; however, these divergent model predictions highlight the
importance of having a good understanding of population struc-
ture in order to make reliable predictions of the rate and pattern
of spatial spread.

It is worth noting that there is one exception to the above
analysis—a Wolbachia infection is potentially confineable to an
isolated release site if the neighboring population (and possibly
the release site itself) is already infected with another Wolbachia

strain. If the two strains cause matings between infected males
harboring one Wolbachia strain and females harboring the other
to be completely or partially unviable (because CI and rescue are
brought about through different mechanisms in the two strains),
the result is a bidirectional mating incompatibility termed bidir-
ectional CI. Bidirectional CI displays threshold dynamics that
depend on the properties of the two infections with respect to
variables such as fitness cost, frequency of maternal transmission
and efficiency of CI-induced sterility; however, for strains having
similar properties, the more prevalent strain will tend to fix in the
population (Keeling et al., 2003). If a neighboring population is
infected with the other strain, the two strains are predicted to
stably coexist for migration rates greater than those observed in
nature (Telschow et al., 2005). Developing upon the model of
Telschow et al. (2005), we find that a second Wolbachia infection
displays very promising confinement properties under default
parameters (Table 1), with a migration threshold of 13.3% per
generation under the two-population model. The corresponding
stochastic migration thresholds are 11.2% per generation for
populations having 1000 individuals and 7.0% per generation for
populations having 100 individuals (Table 2). This suggests that a
novel Wolbachia strain could be introduced into an isolated
population in a confined manner if the surrounding population
is already infected with another Wolbachia strain showing bidir-
ectional CI with the introduced strain.
n)
00)

Transgenic frequency in
pop B (%) (2-pop model,
1% migrants/gen)

Mean time to establishment in Pop B (gen)
(2-pop model, N¼1000, 1% migrants/gen
& at migration threshold)b

100 21.8 & 397.1

100 37.7 & –

100 37.1 &–

100 35.03 & 234.4

0.5 –& 45.9

4.2 –&–

3.2 –& 119.2

0.005 –&–

0.01 –&–

1.8 –& 46.4

1.6 –&–

2.0 –& 109.0

– –&–
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5. Underdominance

The simplest example of an underdominant system is a single
bi-allelic locus for which the heterozygote is less fit than either
homozygote (Hartl and Clark, 1997). In the extreme case, matings
between opposite homozygotes are sterile, resulting in similar
dynamics to bidirectional CI. Underdominant alleles therefore
display high migration thresholds and are predicted to be con-
fineable to partially isolated populations (Altrock et al., 2010).
Attempts are currently underway to engineer single-allele under-
dominance (Hay et al., unpublished); however, a range of alter-
native underdominant systems are also available, including
chromosomal alterations such as inversions and translocations
(Serebrovskii, 1940; Curtis, 1968), and underdominant chromo-
somes engineered using combinations of multiple toxins and
antidotes at one or two loci (Davis et al., 2001). We show that
all these systems display desirable features for confinement, but
differ in terms of their migration thresholds and the frequencies
they reach in neighboring populations.

5.1. Translocations

Translocations are created when terminal segments of two non-
homologous chromosomes undergo a mutual exchange (Fig. 2A).
These display underdominant dynamics because, when a transloca-
tion heterozygote undergoes meiosis, half its gametes lack one
chromosomal segment and have a duplication of another, resulting
in a reduction in the number of viable offspring. If the translocation-
bearing gametes fuse with wild-type gametes, they produce unviable
offspring; however, if they fuse with gametes having chromosomes
with complementary duplications and deletions, they produce viable
offspring (Fig. 2A). The use of translocations for transforming pest
populations was initially suggested by Serebrovskii (1940) and later
developed by Curtis (1968), and a number of models have been
proposed to describe their spread through randomly mating popula-
tions (Wright, 1941; Curtis and Robinson, 1971). Models have also
been proposed to describe the spatial spread of underdominant
chromosomal rearrangements (Karlin and McGregor, 1972; Lande,
1979; Barton, 1979; Altrock et al., 2010); however, these have
addressed rearrangements that can be approximated by a single
underdominant allele, while a proper treatment of reciprocal translo-
cations requires at least two loci.

To address this discrepancy, we extend a model similar to that of
Curtis and Robinson (1971) to describe the movement of individuals
with reciprocal translocations between two connected metapopula-
tions. We denote the first chromosome with a translocated segment
by ‘‘T’’ and the wild-type version of this chromosome by ‘‘t.’’
Similarly, we denote the second chromosome with a translocated
segment by ‘‘R’’ and the wild-type version of this chromosome by
‘‘r.’’ As a two-locus system, there are nine possible genotypes;
however, only individuals carrying the full chromosome comple-
ment are viable, which corresponds to the genotypes TTRR, TtRr and
ttrr. In population A, the proportion of the kth generation that are
mosquitoes of genotypes TTRR, TtRr and ttrr are denoted by pTTRR

A,k ,
pTtRr

A,k and pttrr
A,k , respectively. The corresponding proportions for

population B are pTTRR
B,k , pTtRr

B,k and pttrr
B,k .

We begin by considering the case without migration, assuming
random mating and an infinite population size. The four haplotypes
that determine genotype frequencies in the next generation – TR, tR,
Tr and tr – are described by the following frequencies:

f TR
A,k ¼ pTTRR

A,k þ0:25pTtRr
A,k , ð22Þ

f tR
A,k ¼ 0:25pTtRr

A,k , ð23Þ

f Tr
A,k ¼ 0:25pTtRr

A,k , ð24Þ
f tr
A,k ¼ pttrr

A,k þ0:25pTtRr
A,k : ð25Þ

By considering all possible mating pairs, the genotype fre-
quencies in the next generation are given by

pTTRR
A,kþ1 ¼ ðf

TR
A,kÞ

2
ð1�sÞ=WA,kþ1, ð26Þ

pTtRr
A,kþ1 ¼ 2ðf TR

A,kf tr
A,kþ f tR

A,kf Tr
A,kÞð1�hsÞ=WA,kþ1, ð27Þ

pttrr
A,kþ1 ¼ ðf

tr
A,kÞ

2=WA,kþ1: ð28Þ

Here, s represents the fitness cost of being homozygous for
the translocation, hs represents the fitness cost on translocation
heterozygotes, and WA,kþ1 is a normalizing term given by

WA,kþ1 ¼ ðf
TR
A,kÞ

2
ð1�sÞþ2ðf TR

A,kf tr
A,kþ f tR

A,kf Tr
A,kÞð1�hsÞþðf tr

A,kÞ
2: ð29Þ

For the two-population model, as for Medea, we assume that
the mating pool in both populations is made up of individuals
from both populations. This requires us to make the following
substitutions:

ðf TR
A,k,f tR

A,k,f Tr
A,k,f tr

A,kÞ’ðf
TR
A,k,f tR

A,k,f Tr
A,k,f tr

A,kÞð1�mÞþðf
TR
B,k,f tR

B,k,f Tr
B,k,f tr

B,kÞm:
ð30Þ

Applying these substitutions to Eq. (27), for illustrative pur-
poses, we obtain

pTtRr
A,kþ1 ¼ 2ð½f TR

A,kð1�mÞþ f TR
B,km�½f

tr
A,kð1�mÞþ f tr

B,km�

þ½f tR
A,kð1�mÞþ f tR

B,km�½f
Tr
A,kð1�mÞþ f Tr

B,km�Þð1�hsÞ=WA,kþ1

ð31Þ

and analogous substitutions apply to population B. Finally, con-
sidering a release in population A at generation 0, the initial
condition for the difference equations is given by

ðpTTRR
A,0 ,pttrr

A,0 Þ ¼ ðx,1�xÞ, ð32Þ

ðpTTRR
B,0 ,pttrr

B,0 Þ ¼ ð0,1Þ, ð33Þ

where the released mosquitoes represent a proportion, x, of
population A at the time of release. The time-series dynamics of
the translocations in both populations can then be calculated
using the above difference equations.

Results from these simulations suggest that, for default migra-
tion rates (1% per generation) reciprocal translocations are
expected to remain confined to partially isolated populations.
A translocation with a fitness cost of s¼0.05 with heterozygosity
h¼0.5 is predicted to spread to near-fixation at its release site;
but to reach a population frequency of only �4.2% in neighboring
populations (Fig. 2B). If the migration rate exceeds 5.8% per
generation in the two-population model then, rather than spread-
ing into population B, the translocation is expected to be lost from
both populations (Fig. 2C); however migration rates at potential
trial sites are expected to be lower than this. For populations of
1000 individuals, there is a chance (greater than 0.1%) that the
translocation will become established in both populations for
migration rates higher than 6.0% per generation (Fig. 2D); and for
populations of 100 individuals, the translocation has the same
chance of becoming established in both populations for migration
rates higher than 2.7% per generation. These are lower migration
thresholds than for bidirectional CI (Table 2); however they are
still promising for the ability to confine a translocation to an
isolated release site. For translocations with higher fitness costs,
establishment in both populations is still possible for small popula-
tions (�100 individuals) with high migration rates (45.9% per
generation for s¼0.1 and 419.2% per generation for s¼0.2); but
seems unlikely for larger populations (�1000 individuals or larger).
Translocations generated using x-rays often have high associated
fitness costs, probably due to x-ray-induced background mutations,



Fig. 2. Dynamics of underdominant systems under the source and two-population models. (A) Reciprocal translocations form when terminal segments of two nonhomologous

chromosomes are mutually exchanged. These display underdominant dynamics since, when a translocation heterozygote undergoes meiosis, half its gametes are unbalanced and

many combinations of gametes produce unviable offspring. (B) Single stochastic realization of a translocation released at 60% in population A. The translocation is associated with a

fitness cost of s¼0.05 (h¼0.5). Population A exchanges migrants with population B at a rate of 1% per generation and the size of both populations is 10,000. The translocation

reaches near-fixation in population A within 15 generations but only spreads to �4.2% in population B. (C) For the source model, the translocation displays threshold behavior with

respect to migration rate. For the two-population model, there is a migration threshold below which the translocation fixes in population A and persists at a low level in population

B, and above which it is lost in both populations. (D) For small population sizes (�100 individuals) and migration rates above 4% per generation, there is a chance that the

translocation will become established in population B under the two-population model. (E) Engineered underdominance consists of two constructs, each of which possesses a toxin

gene and an antidote gene that suppresses the expression or activity of the toxin gene carried by the other construct. In the two-locus system, the constructs are inserted at distant

loci on the same chromosome or at different loci on nonhomologous chromosomes. (F) Single stochastic realization of constructs released at 50% in population A. Population A

exchanges migrants with population B at a rate of 1% per generation and the size of both populations is 10,000. The two constructs are associated with additive fitness costs of

s¼0.05 (h¼0.5). The constructs reach near-fixation in population A within 10 generations, but only spread to a frequency of �3.2% in population B (in the form of individuals having

at least one of each transgenic construct). (G) Two-locus underdominance displays threshold behavior with respect to migration rate. (H) As population size decreases, there is a

chance that two-locus underdominance can become established in neighboring populations for smaller migration rates. (I) For single-locus engineered underdominance, the toxin–

antidote constructs are inserted at the same location on homologous chromosomes. (J) Single stochastic realization of constructs released at 70% in population A. Population A

exchanges migrants with population B at a rate of 1% per generation and the size of both populations is 10,000. The constructs are associated with a fitness cost of s¼0.05. The

constructs reach near-fixation in population A within eight generations but only spread to �0.005% in population B. (K) For the source model, single-locus engineered

underdominance displays threshold behavior with respect to migration rate. For the two-population model, there is a migration threshold below which the constructs fix in

population A and persist at a low level in population B, and above which they are lost in both populations. (L) Even for stochastic populations with 100 individuals, single-locus

engineered underdominance is not expected to become established in population B. (M) An underdominant allele for which hybrids are completely unviable. (N) Single stochastic

realization of an allele released at 60% in population A. Population A exchanges migrants with population B at a rate of 1% per generation and the size of both populations is 10,000.

For a fitness cost of s¼0.05, the construct reaches near-fixation in population A within five generations but only spreads to �0.01% in population B. (O) For the source model,

extreme underdominance displays threshold behavior with respect to migration rate. For the two-population model, there is a migration threshold below which the construct fixes

in population A and persists at a low level in population B and above which it is lost in both populations. (P) For small population sizes (�100 individuals) and migration rates above

15% per generation, there is a chance that the underdominant allele will become established in both populations under the two-population model.
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or the location of translocation breakpoints near genes with strong
fitness effects (Robinson, 1976). This is thought to be a major reason
why past field trials were unsuccessful in demonstrating spread
(Lorimer et al., 1972); however, it may now be possible to generate
translocations with minimal fitness costs through the use of site-
specific recombination systems that do not require mutagenesis
(Golic and Golic, 1996; Egli et al., 2004).

These results are qualitatively consistent with the single-locus
models of underdominant chromosomal rearrangements mentioned
earlier. Karlin and McGregor (1972) showed that spatial polymorph-
ism – near-fixation in one population and near-elimination in
another – is locally stable for sufficiently small migration rates.
Altrock et al. (2010) extended this analysis, investigating the effects
of asymmetries in fitnesses and migration rates, and confirmed that
underdominant alleles can be used to achieve local population
replacement. Barton (1979) modeled underdominant chromosomal
rearrangements in continuous populations and showed that one
arrangement can advance or recede if it has a higher or lower fitness
than the other; however, this spread can be arrested in regions of
low population density. Finally, it is worth noting that translocations
are known to have accumulated and spread between populations in
many species, presumably beginning from very low frequencies
(Bush et al., 1977); however, such events have occurred on an
evolutionary timescale involving many natural trials (Wright, 1941),
while the scenario being considered here involves a much shorter
timescale and many fewer trials. Under these circumstances, reci-
procal translocations with a modest fitness cost are expected to be
confineable to a partially isolated population.

5.2. Engineered underdominance (two-locus)

A novel form of underdominance that is in principle straight-
forward to engineer has been suggested by Davis et al. (2001). In
this system there are two transgenic constructs, each of which
possesses a gene whose expression induces lethality and a gene
that suppresses the expression or activity of the gene inducing
lethality carried by the other construct. The constructs can either
be inserted at the same locus on a pair of homologous chromo-
somes (Fig. 2I) or at different loci on nonhomologous chromo-
somes (Fig. 2E). These systems display underdominant properties
because individuals carrying neither or both constructs are viable;
but a proportion of their offspring – those carrying just one of
the constructs – are unviable. The dynamics of engineered under-
dominance have been modeled by Davis et al. (2001) and expanded
upon by Magori and Gould (2006); however both of these model-
ing efforts have been limited to single randomly mating, determi-
nistic populations. We extend the model of Davis et al. (2001) to
describe the dynamics of engineered underdominance in two
connected metapopulations, beginning with the two-locus case
(Fig. 2E).

Following from the model of reciprocal translocations, we
denote the transgenic allele at the first locus by ‘‘T’’ and the null
allele at this locus by ‘‘t.’’ At the second locus, we denote the
transgenic allele by ‘‘R’’ and the null allele by ‘‘r.’’ As a two-locus
system, there are nine possible genotypes; however, individuals
possessing only one transgenic construct express a lethal gene
without its suppressor, and so only five of these genotypes are
viable—TTRR, TtRR, TTRr, TtRr and ttrr. In population A, we denote
the proportion of the kth generation that are mosquitoes having
these genotypes by pTTRR

A,k , pTtRR
A,k , pTTRr

A,k , pTtRr
A,k and pttrr

A,k , respectively,
with corresponding symbols for population B. The four haplo-
types that determine genotype frequencies in the next generation
are TR, tR, Tr and tr, which are described by the following
frequencies:

f TR
A,k ¼ pTTRR

A,k þ0:5pTtRR
A,k þ0:5pTTRr

A,k þ0:25pTtRr
A,k , ð34Þ
f tR
A,k ¼ 0:5pTtRR

A,k þ0:25pTtRr
A,k , ð35Þ

f Tr
A,k ¼ 0:5pTTRr

A,k þ0:25pTtRr
A,k , ð36Þ

f tr
A,k ¼ pttrr

A,k þ0:25pTtRr
A,k : ð37Þ

By considering all possible mating pairs (assuming random
mating and an infinite population size), the genotype frequencies
in the next generation are given by

pTTRR
A,kþ1 ¼ ðf

TR
A,kÞ

2
ð1�2sÞ=WA,kþ1, ð38Þ

pTtRR
A,kþ1 ¼ 2f TR

A,kf tR
A,kð1�1:5sÞ=WA,kþ1, ð39Þ

pTTRr
A,kþ1 ¼ 2f TR

A,kf Tr
A,kð1�1:5sÞ=WA,kþ1, ð40Þ

pTtRr
A,kþ1 ¼ 2ðf TR

A,kf tr
A,kþ f tR

A,kf Tr
A,kÞð1�sÞ=WA,kþ1, ð41Þ

pttrr
A,kþ1 ¼ ðf

tr
A,kÞ

2=WA,kþ1: ð42Þ

Here, each construct is associated with a fitness cost of s/2 (i.e.
h¼0.5), and WA,kþ1 is a normalizing term given by

WA,kþ1 ¼ ðf
TR
A,kÞ

2
ð1�2sÞþ2ðf TR

A,kf tR
A,kþ f TR

A,kf Tr
A,kÞð1�1:5sÞ

þ2ðf TR
A,kf tr

A,kþ f tR
A,kf Tr

A,kÞð1�sÞþðf tr
A,kÞ

2: ð43Þ

Analogous equations apply to population B.
For the two-population model, we assume that the mating

pool in both populations is made up of individuals from both
populations, which requires us to make the substitutions in
Eq. (30). For illustrative purposes, applying these substitutions
to Eq. (41), we obtain

pTtRr
A,kþ1 ¼ 2ð½f TR

A,kð1�mÞþ f TR
B,km�½f

tr
A,kð1�mÞþ f tr

B,km�

þ½f tR
A,kð1�mÞþ f tR

B,km�½f
Tr
A,kð1�mÞþ f Tr

B,km�Þð1�sÞ=WA,kþ1: ð44Þ

These substitutions also apply to Eqs. (38)–(42), and analogous
substitutions apply to population B. Considering a release in
population A at generation 0, the initial condition for the difference
equations is given by

ðpTTRR
A,0 ,pttrr

A,0 Þ ¼ ðx,1�xÞ, ð45Þ

ðpTTRR
B,0 ,pttrr

B,0 Þ ¼ ð0,1Þ, ð46Þ

where the released mosquitoes represent a proportion, x, of
population A at the time of release. The time-series dynamics in
both populations can then be calculated using the above difference
equations.

Numerical simulations suggest that, for default migration rates
(1% per generation) two-locus engineered underdominance is
expected to remain confined to partially isolated populations,
although it is more likely to spread between populations
than reciprocal translocations. Fig. 2F depicts a single stochastic
realization of the two-population model for constructs having



J.M. Marshall, B.A. Hay / Journal of Theoretical Biology 294 (2012) 153–171 163
additive fitness costs of s¼0.05. For a migration rate of 1% per
generation, the system spreads to near-fixation at its release site,
but only reaches a frequency of �3.2% in neighboring popula-
tions. For the same fitness cost, the migration threshold under the
two-population model is 4.3% per generation (Fig. 2G), above
which the system becomes established in both populations. As
population size decreases, the stochastic migration threshold also
decreases, falling to 3.7% per generation for populations of 1000
individuals, and 1.5% per generation for populations of 100
individuals (Fig. 2H). This is lower than for translocations, which
are more likely to be lost from both populations at higher
migration rates; however two-locus engineered underdominance
has a significantly lower release threshold (33.3%, c.f. 52.8% for
translocations for s¼0.05), meaning that fewer transgenic insects
need to be released for local population replacement to be
achieved. Furthermore, for sub-threshold migration rates, two-
locus engineered underdominance spreads to lower frequencies
in neighboring populations (Table 2).
5.3. Engineered underdominance (single-locus)

The two-construct underdominance system proposed by Davis
et al. (2001) also works if both constructs are inserted at a single
locus, although with different dynamical properties including
higher release and migration thresholds. As for the two-locus
system, there are two transgenic constructs, each possessing a
lethal gene and suppressor for the lethal gene on the other
construct (Fig. 2I).

Here, we extend the model of Davis et al. (2001) to describe
the dynamics of single-locus engineered underdominance under
the source and two-population models. As a three-allele system –
two transgenic alleles, ‘‘T’’ and ‘‘R,’’ and one null allele, ‘‘t’’ – there
are six possible genotypes; however, since individuals possessing
only one transgenic construct express a lethal gene without its
suppressor, only two of these genotypes are viable – tt and TR. In
population A, we denote the proportion of the kth generation that
are mosquitoes having these genotypes by uA,k and wA,k, respec-
tively, with corresponding symbols for population B. The geno-
type frequencies in the next generation are then described by the
following frequencies:

uA,kþ1 ¼ u2
A,k=ðu

2
A,kþ0:5w2

A,kð1�sÞÞ, ð47Þ

wA,kþ1 ¼ 0:5w2
A,kð1�sÞ=ðu2

A,kþ0:5w2
A,kð1�sÞÞ: ð48Þ

Analogous equations apply to population B.
For the source model, we begin by assuming that the trans-

gene has already reached equilibrium in population A, ignoring
migratory effects. Davis et al. (2001) showed that, in a randomly
mating population, single-locus engineered underdominance
spreads to fixation for releases exceeding 66.7% in the absence
of a fitness cost, and 67.8% in the presence of a 5% fitness cost. We
assume a super-threshold release in population A, and that
population A remains fixed for this genotype, donating transgenic
individuals to population B at a rate, m, measured relative to the
size of population B. The genotype frequencies in population B are
then given by

uB,kþ1 ¼ u2
B,k=ðu

2
B,kþ0:5w2

B,kð1�sÞþmÞ, ð49Þ

wB,kþ1 ¼ ð0:5w2
B,kð1�sÞþmÞ=ðu2

B,kþ0:5w2
B,kð1�sÞþmÞ: ð50Þ

To characterize the dynamics of the introduced genotype in
population B, we begin by calculating the equilibria,

wB,kþ1 ¼wB,k ¼wB,n : ð51Þ
This gives us three solutions,

wB,n ¼ 1,
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2mð3�sÞ

p
3�s

,
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2mð3�sÞ

p
3�s

( )
: ð52Þ

The first of these represents fixation, and the second and third
represent a mixture of homozygotes and wild-types. Calculating
the stabilities of these equilibria, we see that fixation is stable,
and the other two equilibria only exist when mr1/(6�2s). If this
condition is satisfied, then the second equilibrium is stable and
the third is unstable. This implies that

wB,n ¼

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2mð3�sÞ
p

3�s , mr 1
6�2s

1, m4 1
6�2s

:

8<
: ð53Þ

The expression, 1/(6�2s), therefore represents a migration
threshold for the source model, above which the introduced allele
becomes fixed in population B, and below which it merely persists
at a low level. This migration threshold is 16.7% per generation in
the absence of a fitness cost, and 16.9% per generation for a fitness
cost of s¼0.05 – much greater than the default migration rate (1%
per generation) – suggesting that single-locus engineered under-
dominance will remain confined to its release site under all realistic
parameter values.

A corresponding two-population model confirms that single-
locus engineered underdominance is confineable to a partially
isolated population (Supplementary material, Section 5) and that,
rather than spreading into neighboring populations at high
migration rates, the system is eliminated from both populations,
similar to the case for reciprocal translocations. For a fitness cost
of s¼0.05, the system is predicted to spread to near-fixation at its
release site; but to reach a population frequency of only �0.005%
in neighboring populations (Fig. 2J). The migration threshold
leading to loss is much higher than that for translocations (9.7%
per generation, c.f. 5.8% per generation for translocations, s¼0.05)
(Fig. 2K); however, it is also the case that the release threshold is
much higher (67.8%, c.f. 52.8% for translocations, s¼0.05), indi-
cating that many more transgenic insects need to be released to
exceed the threshold required for local population replacement.
Interestingly, when population sizes are reduced to 100 indivi-
duals, single-locus engineered underdominance is still not
expected to become established in neighboring populations
(Fig. 2L). The single-locus system is therefore highly confineable
to isolated populations, and its main disadvantage is the high
release requirement.

5.4. Underdominance (single-allele)

The confinement of underdominant alleles to local populations
has been modeled by Karlin and McGregor (1972) and Altrock
et al. (2010). These models apply to a single bi-allelic locus with
reduced heterozygote fitness, and may be adequate for describing
chromosomal rearrangements such as paracentric inversions
and fusions (Lande, 1979). Underdominant alleles display release
thresholds similar to those for translocations; however their confine-
ment properties tend to be stronger (Altrock et al., 2010). That said;
the strength of confinement is predicted to decline with increasing
heterozygote fitness—a situation which has been described for
paracentric inversions and fusions (Lande, 1979). We are specifically
interested in the extreme case of underdominance, in which hetero-
zygotes are completely unviable (Fig. 2M), and molecular techniques
are currently being investigated to engineer these systems (Hay et al.,
unpublished).

We use a simplified version of the models of Karlin and
McGregor (1972) and Altrock et al. (2010) to describe the
dynamics of an extreme underdominant allele under the source
and two-population models (Supplementary material, Section 6).
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The source model is analytically tractable because there is only
one parameter—the fitness cost of being homozygous for the
introduced allele, s. Following a similar procedure to the case of
single-locus engineered underdominance, we derive a migration
threshold of 1/(8�4s) for the source model, which equates to
12.5% in the absence of a fitness cost, and 13.2% per generation for
a fitness cost of s¼0.05. This is much greater than then default
rate of 1% per generation, suggesting that single-locus engineered
underdominance will remain confined to its release site under all
realistic parameter values.

Analysis of the corresponding two-population model confirms
that an extreme underdominant allele is confineable to a partially
isolated population (Fig. 2N) and that, like single-locus engi-
neered underdominance and reciprocal translocations, the system
is eliminated from both populations at high migration rates
(Fig. 2O). For populations of 1000 individuals, there is a chance
(greater than 0.1%) that the underdominant allele will become
established in both populations for migration rates higher than
19.4% per generation (Fig. 2P); and for populations of 100
individuals, the underdominant allele has the same chance of
becoming established in both populations for migration rates
higher than 14.7% per generation (both of these migration rates
are much higher than those expected in nature). Interestingly,
while translocations and extreme underdominant alleles have
very similar release thresholds (51.3% for underdominant alleles,
c.f. 52.8% for translocations, s¼0.05), the migration threshold
leading to loss is much higher for an extreme underdominant
allele (17.6% per generation c.f. 5.8% for translocations, s¼0.05)
(Fig. 2O), and these alleles are predicted to spread to much lower
levels in neighboring populations (�0.01%, c.f. �4.2% for translo-
cations). An extreme underdominant allele is therefore preferable
to a pair of reciprocal translocations for local replacement since it
is predicted to lead to less contamination of neighboring popula-
tions and be less vulnerable to elimination due to inward
migration.
6. Other non-invasive gene drive systems

The four forms of underdominance outlined above are non-
invasive in the sense that they are predicted to spread at their
release site but only persist at low levels in neighboring popula-
tions. We show that three other gene drive systems belong to this
category—Semele, inverse Medea and Merea. These systems each
manipulate the offspring ratio in different ways by favoring one
allele over another through the targeted action of a toxin and
antidote encoded at a single locus.

6.1. Semele

Semele consists of a toxin expressed in the semen of transgenic
males and an antidote expressed in females (Fig. 3A). An all-male
release results in population suppression because wild females that
mate with transgenic males produce no offspring; and a release that
includes transgenic females results in gene drive because females
having the construct are favored at high population frequencies
(Marshall et al., 2011). The dynamics of Semele in a single, randomly
mating population have been modeled by Marshall et al. (2011),
with particular emphasis on its potential application for localized
population replacement. Here, we extend this model to describe the
dynamics in two connected metapopulations.

We consider a Semele element as a single allele which we denote
by ‘‘T’’ and denote the null allele at this locus by ‘‘t.’’ In population A,
the proportion of the kth generation that are mosquitoes of
genotypes tt, Tt and TT are denoted by uA,k, vA,k and wA,k, respectively.
The corresponding proportions for population B are uB,k, vB,k and
wB,k. We begin by considering the case without migration, assuming
random mating and an infinite population size. By considering all
possible mating pairs, and removing unproductive crosses between
transgenic males and tt females, the genotypes of embryos in
the next generation in population A are described by the ratio
ûA,kþ1 : v̂A,kþ1 : ŵA,kþ1, where

ûA,kþ1 ¼ u2
A,kþ0:25v2

A,kþ0:5uA,kvA,k, ð54Þ

v̂A,kþ1 ¼ uA,kwA,kþ0:5uA,kvA,kþ0:5v2
A,kþwA,kvA,k, ð55Þ

ŵA,kþ1 ¼w2
A,kþwA,kvA,kþ0:25v2

A,k: ð56Þ

Here, we have assumed 100% toxin efficiency. The genotype
frequencies in the next generation are given by

uA,kþ1 ¼ ûA,kþ1=WA,kþ1, ð57Þ

vA,kþ1 ¼ v̂A,kþ1ð1�hsÞ=WA,kþ1, ð58Þ

wA,kþ1 ¼ ŵA,kþ1ð1�sÞ=WA,kþ1: ð59Þ

Here, s and hs represent the fitness costs associated with being
homozygous or heterozygous for the Semele element, and WA,kþ1 is
a normalizing term given by

WA,kþ1 ¼ ûA,kþ1þ v̂A,kþ1ð1�hsÞþŵA,kþ1ð1�sÞ: ð60Þ

Analogous equations apply to population B.
For the two-population model, we assume that the mating

pool in both populations is made up of individuals from both
populations, which requires us to make the same substitutions as
for Medea, i.e. Eq. (18). Applying these substitutions to Eq. (55),
for illustrative purposes, we obtain,

v̂A,kþ1 ¼ ½uA,kð1�mÞþuB,km�½wA,kð1�mÞþwB,km�
þ0:5½vA,kð1�mÞþvB,km�2þ0:5½uA,kð1�mÞ
þuB,km�½vA,kð1�mÞþvB,km�
þ½wA,kð1�mÞþwB,km�½vA,kð1�mÞþvB,km�: ð61Þ

These substitutions apply to Eqs. (54)–(56), and analogous
substitutions also apply to population B. Considering a release
in population A at generation 0, the initial condition for the
difference equations is given by

ðuA,0,wA,0Þ ¼ ð1�x,xÞ, ð62Þ

ðuA,0,wA,0Þ ¼ ð1,0Þ, ð63Þ

where the released mosquitoes represent a proportion, x, of
population A at the time of release. The time-series dynamics of
the Semele element can then be calculated for both populations.

Results from these simulations suggest that, for default migration
rates (1% per generation), Semele can be confined to a partially-
isolated population and that, in general, Semele displays an inter-
mediate strength of confinement, somewhere between that of
translocations and single-allele underdominance. For a fitness cost
of s¼0.05 with heterozygosity h¼0.5, the element is predicted to
spread to near-fixation at its release site, and to reach a population
frequency of �1.8% in neighboring populations (Fig. 3B, c.f. �0.01%
for single-allele underdominance and �4.2% for translocations).
The migration threshold for Semele is also intermediate (6.9%, c.f.
17.6% for single-allele underdominance and 5.8% for translocations,
Fig. 3C), despite its release threshold being lower than that for either
underdominant system (38.9%, c.f. 51.3% for single-allele under-
dominance and 52.8% for translocations, s¼0.05, h¼0.5). For smaller
population sizes, there is a chance that Semele will spread to
neighboring populations for smaller migration rates (Fig. 3D); how-
ever these are still significantly higher than the migration rates
expected between trial sites. This suggests that Semele is a reason-
able choice for local population replacement due to its predicted



Fig. 3. Dynamics of other non-invasive gene drive systems under the source and two-population models. (A) Semele consists of a toxin expressed in the semen of

transgenic males and an antidote expressed in females. This causes transgenic females to be favored at high population frequencies. (B) Single stochastic realization of an

element released at 50% in population A. Population A exchanges migrants with population B at a rate of 1% per generation and the size of both populations is 10,000. The

element is associated with a fitness cost of s¼0.05 (h¼0.5). Semele reaches near-fixation in population A within 20 generations but only spreads to �1.8% in population B.

(C) Semele displays threshold behavior with respect to migration rate. For the two-population model, there is a migration threshold above which the element reaches near-

fixation in both populations and, in some cases, a range of smaller migration rates for which the element is lost from both populations. (D) For smaller population sizes,

there is a chance that Semele will become established in neighboring populations for smaller migration rates. (E) Inverse Medea consists of a zygotic toxin and maternal

antidote which render heterozygous offspring of wild-type mothers unviable. (F) Single stochastic realization of an element released at 60% in population A. Population A

exchanges migrants with population B at a rate of 1% per generation and the size of both populations is 10,000. The element is associated with a fitness cost of s¼0.05

(h¼0.5). Inverse Medea quickly spreads to 80% in population A and then slowly spreads to near-fixation within 60 generations, but only spreads to �1.6% in population B.

(G) For the source model, inverse Medea displays threshold behavior with respect to migration rate. For the two-population model, there is a migration threshold below

which the element fixes in population A and persists at a low level in population B, and above which it is lost in both populations. (H) For small population sizes (�100

individuals) and migration rates above 6% per generation, there is a chance that inverse Medea will become established in both populations under the two-population

model. (I) Merea consists of a maternal toxin and recessive zygotic antidote. Heterozygous offspring are not rescued by the antidote and hence the element must exceed a

threshold frequency in order to distort the offspring ratio in its favor. (J) Single stochastic realization of an element released at 50% in population A. Population A exchanges

migrants with population B at a rate of 1% per generation and the size of both populations is 10,000. The element is associated with a fitness cost of s¼0.05 (h¼0.5). Merea

fixes in population A within eight generations but only spreads to �2.0% in population B. (K) Merea displays threshold behavior with respect to migration rate. (L) For

smaller population sizes, there is a chance that Merea will become established in neighboring populations for smaller migration rates.
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confinability and moderate release size required for replacement.
The Semele system has not yet been engineered; although several
possible approaches are outlined by Marshall et al. (2011), and since
these only involve a single toxin–antidote pair, they may be simpler
to construct than the double toxin–antidote pair systems proposed
by Davis et al. (2001).

6.2. Inverse Medea

Inverse Medea is another single locus toxin–antidote system
that displays threshold behavior. It consists of a zygotic toxin and
maternal antidote (Fig. 3E) which render heterozygous offspring
of wild-type mothers unviable (Marshall and Hay, 2011a). This
enables it to spread when it represents a majority of the alleles in
a population. The potential for inverse Medea to be confined to a
partially isolated population has been demonstrated by Marshall
and Hay (2011a), and we expand on their analysis here through
the inclusion of a stochastic implementation.

Simulations suggest that, while inverse Medea can be confined to
a partially isolated population, the system is particularly vulnerable
to elimination due to inward migration. For a fitness cost of s¼0.05
with heterozygosity h¼0.5, the element is predicted to spread to
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a high frequency at its release site, and to reach a population
frequency of �1.6% in neighboring populations (Fig. 3F). For the
same fitness cost, the migration threshold leading to loss is only
1.7% per generation (Fig. 3G), although this increases to 2.1% per
generation if the fitness cost is dominant (Marshall and Hay, 2011a).
For small population sizes (�100 individuals), there is a chance that
inverse Medea will become established in neighboring populations;
however this is only expected to occur for migration rates above 6%
per generation (Fig. 3H). This suggests that, although inverse Medea

is confineable – it minimally contaminates neighboring populations
and is eliminated at high migration rates – it is not the best
candidate for local replacement since it is easily eliminated from
its release site. This is less of a concern if the release site has a
relatively large population size compared to neighboring locations;
but is of greater concern when mosquito population structure is not
well characterized. The inverse Medea system has not yet been
engineered; although several possible approaches are outlined by
Marshall and Hay (2011a).

6.3. Merea

Merea is a variant of the standard Medea element described
earlier in which the antidote is recessive (requiring inheritance of
copies from both parents) rather than dominant (Fig. 3I). Hetero-
zygous offspring are no longer rescued by one copy of the zygotic
antidote and therefore the element must exceed a certain critical
frequency before the offspring ratio is distorted in its favor. The
dynamics of Merea in a single randomly mating population have
been modeled by Marshall and Hay (under review) as part of a
larger analysis of single-construct toxin–antidote systems. Here,
we extend the analysis to describe the stochastic and determi-
nistic dynamics in two connected metapopulations.

We consider the Merea element as a single allele which we
denote by ‘‘M,’’ and refer to the null allele as ‘‘m.’’ In population A,
the proportion of the kth generation that are mosquitoes of
genotypes mm, Mm and MM are denoted by uA,k, vA,k and wA,k,
respectively, with corresponding symbols for population B. We
begin by considering the case without migration, assuming random
mating and an infinite population size. By considering all possible
mating pairs, the genotypes of embryos in the next generation in
population A are described by the ratio ûA,kþ1 : v̂A,kþ1 : ŵA,kþ1,
where

ûA,kþ1 ¼ u2
A,kþ0:5uA,kvA,k, ð64Þ

v̂A,kþ1 ¼ uA,kwA,kþ0:5uA,kvA,k, ð65Þ

ŵA,kþ1 ¼w2
A,kþwA,kvA,kþ0:25v2

A,k: ð66Þ

Here, we have assumed 100% toxin efficiency (Chen et al., 2007). The
rest of the analysis is identical to that for Semele and inverse Medea,
since all three are single locus toxin–antidote systems, and is
described in Eqs. (57)–(63). Once again, the equations for the two-
population model can be iterated to calculate the time-series
dynamics of the Merea element in both populations.

Simulations suggest that, for default migration rates (1% per
generation), Merea can be confined to a partially isolated popula-
tion and that, like Semele, Merea displays an intermediate strength
of confinement between that of translocations and single-allele
underdominance. For a fitness cost of s¼0.05 with heterozygosity
h¼0.5, the element is predicted to spread to near-fixation at its
release site, and to reach a population frequency of �2.0% in
neighboring populations (Fig. 3J; c.f. �1.8% for Semele). It has a
migration threshold of 7.0% per generation (Fig. 3K, c.f. 6.9% per
generation for Semele) and a release threshold of 42.8% (c.f. 38.9%
for Semele, s¼0.05, h¼0.5). For smaller population sizes, there is a
chance that Merea will spread to neighboring populations for
smaller migration rates (Fig. 3L); however, for populations of 100
individuals, the stochastic migration threshold is �4.0% (Table 2),
which is still significantly higher than migration rates expected
between trial sites. Merea performs very similarly to Semele in
terms of confinement and would be a reasonable choice for local
population replacement. An advantage of Merea is its speed and
efficiency of spread—it takes only seven generations to exceed a
frequency of 98% in population A following a 50% release, c.f. 36
generations for Semele (s¼0.05, h¼0.5, m¼0.01 per generation). It
is also capable of spreading to fixation in an isolated population
despite a fitness cost, while Semele is not. However, the Merea

system has not yet been engineered and does require engineering
a recessive antidote, which has not yet been achieved.
7. Killer-rescue

A novel two-locus gene drive system has been suggested by
Gould et al. (2008) that is self-limiting in time. The system
consists of two alleles at unlinked loci—one that encodes a toxin
(a killer allele), and another that confers immunity to the toxin (a
rescue allele), which could be linked to a gene for disease
refractoriness. A release of individuals homozygous for both
alleles initially results in drive as the alleles segregate and the
presence of the killer allele in the population confers a temporary
benefit to those also carrying the rescue allele; however, as the
killer allele declines in frequency, the rescue allele is eventually
eliminated through natural selection if it confers a fitness cost to
carriers. The dynamics of the killer-rescue system are distinct in
the sense that gene drive is temporary, and the degree to which
transgenic alleles spread depends on their release size and fitness
costs. The dynamics are also distinct in the sense that killer-
rescue does not display threshold behavior and, as we show,
transgenic alleles are therefore able to disperse into neighboring
populations with comparable ease, albeit over a limited time
span. Gould et al. (2008) have analyzed the dynamics of the killer-
rescue system in a single, randomly mating population, and here,
we extend this analysis to two connected metapopulations.

As a two-locus system, there are nine possible genotypes for
killer-rescue; however only seven of these are viable (individuals
possessing the killer construct without the rescue construct are
unviable). We denote the killer allele at the first locus by ‘‘K’’ and
the null allele at this locus by ‘‘k.’’ At the second locus, we denote
the rescue allele by ‘‘R’’ and the null allele by ‘‘r.’’ In population A,
the proportion of the kth generation that are mosquitoes of
genotypes KKRR, KKRr, KkRR, KkRr, kkRR, kkRr and kkrr are denoted

by pKKRR
A,k , pKKRr

A,k , pKkRR
A,k , pKkRr

A,k , pkkRR
A,k , pkkRr

A,k and pkkrr
A,k , respectively. The

corresponding proportions for population B are pKKRR
B,k , pKKRr

B,k , pKkRR
B,k ,

pKkRr
B,k , pkkRR

B,k , pkkRr
B,k and pkkrr

B,k .

We begin by considering the case without migration, assuming
random mating and an infinite population size. The four haplo-
types that determine genotype frequencies in the next generation
are KR, Kr, kR and kr. These are described by the following
frequencies:

f KR
A,k ¼ pKKRR

A,k þ0:5pKkRR
A,k þ0:5pKKRr

A,k þ0:25pKkRr
A,k , ð67Þ

f Kr
A,k ¼ 0:5pKKRr

A,k þ0:25pKkRr
A,k , ð68Þ

f kR
A,k ¼ pkkRR

A,k þ0:5pkkRr
A,k þ0:5pKkRR

A,k þ0:25pKkRr
A,k , ð69Þ

f kr
A,k ¼ pkkrr

A,k þ0:5pkkRr
A,k þ0:25pKkRr

A,k : ð70Þ
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By considering all possible mating pairs, the genotype fre-
quencies in the next generation are given by

pKKRR
A,kþ1 ¼ ðf

KR
A,kÞ

2
ð1�2sÞ=WA,kþ1, ð71Þ

pKKRr
A,kþ1 ¼ 2f KR

A,kf Kr
A,kð1�1:5sÞ=WA,kþ1, ð72Þ

pKkRR
A,kþ1 ¼ 2f KR

A,kf kR
A,kð1�1:5sÞ=WA,kþ1, ð73Þ

pKkRr
A,kþ1 ¼ 2ðf KR

A,kf kr
A,kþ f kR

A,kf Kr
A,kÞð1�sÞ=WA,kþ1, ð74Þ

pkkRR
A,kþ1 ¼ ðf

kR
A,kÞ

2
ð1�sÞ=WA,kþ1, ð75Þ

pkkRr
A,kþ1 ¼ 2f kr

A,kf kR
A,kð1�0:5sÞ=WA,kþ1, ð76Þ

pkkrr
A,kþ1 ¼ ðf

kr
A,kÞ=WA,kþ1: ð77Þ

Here, each construct is associated with a fitness cost of s/2 (i.e.
h¼0.5), and WA,kþ1 is a normalizing term given by

WA,kþ1 ¼ ðf
KR
A,kÞ

2
ð1�2sÞþð2f KR

A,kf Kr
A,kþ2f KR

A,kf kR
A,kÞð1�1:5sÞ

þððf kR
A,kÞ

2
þ2f KR

A,kf kr
A,kþ2f Kr

A,kf kR
A,kÞð1�sÞ

þ2f kr
A,kf kR

A,kð1�0:5sÞþðf kr
A,kÞ

2: ð78Þ

Analogous equations apply to population B.
The source model in which the system first reaches equili-

brium in population A is not relevant because the killer-rescue
system is designed to be self-limiting in time, and hence the only
equilibrium is loss. We therefore consider the two-population
model to get an idea of how much the killer-rescue system
spreads into neighboring populations. For a migration rate of m
in both directions, we make the following substitutions:

ðf KR
A,k,f kR

A,k,f Kr
A,k,f kr

A,kÞ’ðf
KR
A,k,f kR

A,k,f Kr
A,k,f kr

A,kÞð1�mÞþðf
KR
B,k,f kR

B,k,f Kr
B,k,f kr

B,kÞm,

ð79Þ

Applying these substitutions to Eq. (74), for illustrative pur-
poses, we obtain

pKkRr
A,kþ1 ¼ 2ð½f KR

A,kð1�mÞþ f KR
B,km�½f

kr
A,kð1�mÞþ f kr

B,km�

þ½f kR
A,kð1�mÞþ f kR

B,km�½f
Kr
A,kð1�mÞþ f Kr

B,km�Þð1�sÞ=WA,kþ1: ð80Þ
Fig. 4. Stochastic time-series dynamics of killer-rescue constructs released at a frequenc

costs of s¼0.05 (h¼0.5). Population A exchanges migrants with population B at each gen

two populations is 1% per generation. (A) For a single release, transgenic mosquitoes rea

next 200 generations. In population B, transgenic mosquitoes reach a peak frequency of

(B) For a release every time transgenic frequency falls below 50%, transgenic mosquitoe

and 50%. In population B, transgenic mosquitoes reach a peak frequency of 43% after the

increased to s¼0.1 (h¼0.5), killer-rescue contaminates neighboring populations less;

transgenic frequency falls below 50%, transgenic mosquitoes reach a peak frequency of

transgenic mosquitoes reach a peak frequency of 23% after the third release and osc

neighboring populations for the release strategy depicted in panel B. Killer-rescue pe

population E.
These substitutions also apply to Eqs. (71)–(78) and analogous
substitutions apply to population B. Considering a release in
population A at generation 0, the initial condition for the difference
equations is given by

ðpkkrr
A,0 ,pKKRR

A,0 Þ ¼ ð1�x,xÞ, ð81Þ

ðpkkrr
B,0 ,pKKRR

B,0 Þ ¼ ð1,0Þ: ð82Þ

Here, the released mosquitoes represent a proportion, x, of popula-
tion A at the time of release. Using this initial condition and the
difference equations described above, we can calculate the time-
series dynamics of the killer-rescue alleles in both populations.

We consider two realizations of killer-rescue dynamics with
default migration rates (1% per generation). Fig. 4A depicts a single
stochastic realization of a 50% release in population A of individuals
homozygous for both alleles, each associated with a fitness costs of
s¼0.05. Transgenic mosquitoes reach a peak frequency of 95% in
population A and 29% in population B, and these frequencies decline
slowly over the next 200 generations. Fig. 4B depicts a release every
time transgenic frequency falls below 50%. Transgenic mosquitoes
reach a peak frequency of 98% in population A and 43% in population
B, which oscillates between this and 31%.

Killer-rescue can be more effectively confined with higher
fitness costs and smaller release sizes. The catch-22 is that, with
higher fitness costs and/or smaller release sizes, transgenic
mosquitoes also reach a lower maximum frequency at their
release site. Fig. 4C depicts the multiple release strategy men-
tioned above for alleles having a fitness cost of s¼0.1. For a single
release, transgenic mosquitoes reach a peak frequency of 89%
in population A and 16% in population B. For multiple releases,
transgenic mosquitoes reach a peak frequency of 94% in popula-
tion A and 23% in population B, oscillating between this and 16%.
The same correlation between reduced transgenic frequency at
the release site and reduced contamination of neighboring popula-
tions is seen when the release size is reduced. Thus, while killer-
rescue is self-limiting in time (assuming that the fitness load on the
rescue allele persists), it spreads to higher frequencies in neighbor-
ing populations in the short term than gene drive systems with
thresholds.
y of 50% in population A. Both alleles (K and R) are associated with additive fitness

eration. The size of both populations is 10,000 and the migration rate between the

ch a peak frequency of 95% within 11 generations and decline in frequency over the

29% within 43 generations and decline in frequency over the next 150 generations.

s reach a peak frequency of 98% after the second release and oscillate between this

third release and oscillate between this and 31%. (C) If the additive fitness costs are

but also spreads to lower frequencies at its release site. For a release every time

94% after the second release and oscillate between this and 50%. In population B,

illate between this and 16%. (D) Spread of killer-rescue through a series of five

aks at 35.3% in population B and can be found at frequencies as high as 1.8% in
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8. Spread beyond immediately neighboring populations

Finally, to monitor the spread of a gene drive system beyond
its neighboring population, we adapt the two-population model
to account for a series of five populations. Let us denote these as
populations A, B, C, D and E. The populations are arranged in
series, and the release occurs in population A. We further assume
that the mating pool in population A is made up of individuals
from populations A and B, the mating pool in population B is
made up of individuals from populations A, B and C, and so on.
Using Medea as a case study, for a migration rate of m in both
directions this means that we need to make the substitutions
given in Eq. (18) for population A, while for population B we need
to make the revised substitutions,

ðuB,k,vB,k,wB,kÞ’ðuB,k,vB,k,wB,kÞð1�2mÞ
þðuA,k,vA,k,wA,kÞmþðuC,k,vC,k,wC,kÞm, ð83Þ

Analogous substitutions apply to populations C, D and E.
Considering a release of proportion x in population A at genera-
tion 0, the initial condition for the resulting difference equations
is given by

ðuA,0,wA,0Þ ¼ ð1�x,xÞ, ð84Þ

ðuB,0,wB,0Þ ¼ ðuC,0,wC,0Þ ¼ ðuD,0,wD,0Þ ¼ ðuE,0,wE,0Þ ¼ 1: ð85Þ

Using this initial condition and the difference equations
described above, we can calculate the time-series dynamics in
all five populations.

Fig. 5 depicts the spread of the non-invasive gene drive systems
described above though populations B through E (population A is
omitted here to provide resolution for neighboring populations).
Migration rates of m¼0.01 per generation and fitness costs of
s¼0.05 are assumed (with heterozygosity h¼0.5), which are addi-
tive in the case of two-locus systems. For invasive systems – Medea,
HEGs, TEs and Wolbachia – the transgene spreads to high frequen-
cies in all populations. For non-invasive gene drive systems, the
transgene spreads such that greater than 97% of individuals carry
the transgene at the release site. Gene drive systems with high
migration thresholds only display limited spread into population B,
and are almost undetectable beyond this. The most persistent are
Fig. 5. Spread of transgenes linked to gene drive systems through a series of five

neighboring populations. Each transgenic allele has a fitness cost of s¼0.05.

Equilibrium transgenic frequencies are shown for a super-threshold release in

population A. In all cases, the transgene spreads to a frequency above 97% in

population A (not shown), plateaus at a frequency below 5% in population B, and is

almost undetectable in populations C–E.
translocations and two-locus engineered underdominance, which
spread to 3.8% and 3.2% in population B, respectively. Moving one
more population along, translocations and two-locus underdomi-
nance are diminished to equilibrium frequencies of 0.037% and
0.029%, respectively. The least invasive systems are single-allele
underdominance and single-locus engineered underdominance,
which persist at less than 0.01% in the directly neighboring popula-
tion. The single-locus toxin–antidote systems – Semele, inverse
Medea and Merea – persist at intermediate levels in neighboring
populations and are virtually undetectable beyond Population B.

As mentioned above, killer-rescue is somewhat of a unique
case. Fig. 4D depicts a single stochastic realization of the release
strategy depicted in Fig. 4B for a series of five populations.
Transgenic mosquitoes reach a maximum frequency of 98.0% in
population A and this frequency gradually diminishes with dis-
tance, reaching 35.3% in population B, 8.7% in population C, 3.1%
in population D and 1.8% in population E. The system therefore
spreads the furthest and results in the largest maximum trans-
gene frequencies in neighboring populations; however, at the
same time, the system can be eliminated simply by ceasing
releases provided the rescue allele is associated with a robust
fitness cost. Higher fitness costs and smaller release sizes dimin-
ish spread to neighboring populations, but also have the effect of
making the system less effective at its release site.
9. Discussion

We have compared the confinement properties of a variety of
gene drive systems being considered to drive disease-refractory
genes into mosquito populations. Our results highlight several
systems with desirable features for confinement. In simple two
and five-population models, these systems require a high migra-
tion rate to become established in neighboring populations
(greater than 4% per generation), and persist at low frequencies
in neighboring populations for moderate migration rates (less
than 5% for a migration rate of 1% per generation). Single-allele
underdominance and single-locus engineered underdominance
have the strongest confinement properties, reaching a prevalence
of 0.01% or less in neighboring populations, and remaining
confined to their release site for migration rates up to �10% per
generation for single-allele underdominance and �18% per gen-
eration for two-locus engineered underdominance. While these
systems show promise for confinement, single-allele underdomi-
nance is difficult to engineer, at least in the case where hybrids
are completely unviable. Single-locus engineered underdomi-
nance requires a very high introduction frequency in order to
spread at its release site (upwards of 67%); but this may not be a
serious concern if the primary goal is to bring about replacement
of an isolated population of modest size.

Toxin–antidote systems such as Semele, Merea and two-locus
engineered underdominance also show promising confinement
properties, while requiring lower introduction frequencies. Semele,
for instance, will spread at an isolated release site for introduction
frequencies greater than �39%, and is predicted to remain confined
to this population for migration rates less than �7% per generation.
For a migration rate of 1% per generation, Semele reaches a pre-
valence of less than 2% in directly neighboring populations. Merea

displays similar confinement properties to Semele, but is able to
spread much more quickly at its release site and can reach fixation
in an isolated population despite a fitness cost. The difficulty with
Merea is that it requires engineering a recessive antidote and, while
efforts are ongoing to engineer recessive components (Hay et al.,
unpublished), these efforts have not yet succeeded. Semele has also
not yet been engineered, although several approaches can be taken
using currently available molecular tools (Marshall et al., 2011).
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Two-locus engineered underdominance will spread for even smaller
introduction frequencies (greater than �33%), but has a proportio-
nately lower migration threshold of �4% per generation. It is
predicted to reach a prevalence of �3% in neighboring populations
for a migration rate of 1% per generation. Engineered underdomi-
nance requires the creation of two simultaneously acting toxin–
antidote pairs. Systems with these characteristics may be relatively
easy to engineer using protein toxins and small RNAs that silence
protein expression as antidotes.

Translocations have long been suggested as tools for controlling
insect populations (Serebrovskii, 1940), and model predictions
suggest that they can be confined to partially isolated populations;
however, for a relatively high release threshold (greater than 53%
for a fitness cost of s¼0.05), they display a weaker strength of
confinement than the above-mentioned toxin–antidote systems.
Invasive gene drive systems such as HEGs and TEs show little hope
of confinement. Medea and Wolbachia display moderate confine-
ment properties in the presence of large fitness costs; however,
for the case of Medea, it is expected to be difficult to engineer a
high fitness cost in a way that is robust to mutational inactivation.
Fitness costs associated with Wolbachia may also evolve over time,
as observed in populations of D. simulans (Weeks et al., 2007),
suggesting that they cannot be relied upon for confinement. An
exception is if a Wolbachia infection is introduced into a population
that is already infected with another Wolbachia strain acting through
a different mechanism. In this case, the resulting bidirectional
CI produces confinement properties intermediate between those of
single-allele underdominance and toxin–antidote systems such as
Semele, Merea and two-locus engineered underdominance.

An interesting comparison can be made between killer-rescue
constructs and gene drive systems with thresholds. Killer-rescue
is self-limiting in time (Gould et al., 2008); but it is able to
disperse through multiple populations and reach higher frequen-
cies in neighboring populations than gene drive systems with
thresholds. This does not mean that its spread is unlimited; but
rather that the release site must be considered to include more
communities than a release of engineered underdominance, for
instance. Killer-rescue has the benefit that its presence is tem-
porary; but it may take years for associated fitness costs to
completely remove rescue transgenes from the release site and
neighboring populations. In contrast, gene drive systems with
thresholds can be completely removed from populations within
months through a mass-release of wild-type insects, which dilute
transgenes to sub-threshold frequencies.

Given the simplicity of the modeling framework, the results
of this study should be interpreted as comparative rather than
predictive, with an emphasis on guiding engineering efforts aimed
at providing genetic tools for local population replacement. Once
such tools have been developed, a detailed ecological analysis will
be necessary to assess the feasibility of local replacement prior to
their implementation. Such an analysis must take into account
demographic details of local mosquito populations, including
seasonal fluctuations in population sizes and migration rates,
and variations in chromosomal form and species make-ups over
time (Lanzaro et al., 1998; Taylor et al., 2001; Tripet et al., 2005).
Previous analyses have modeled asymmetries in population sizes
(Marshall and Hay, 2011a) and migration rates (Altrock et al.,
2010), and found these to be significant. Models of invasive gene
drive systems have accounted for reduced gene flow between
sibling species and chromosomal forms of the Anopheles gambiae

species complex (Taylor and Manoukis, 2003), and these consid-
erations are even more relevant for gene drive systems with
thresholds, which could potentially be confined to the chromoso-
mal form or species of release. These points highlight the need
for a deep understanding of mosquito ecology at sites where local
replacement systems could eventually be released.
In summary, the existence of gene drive systems with strong
confinement properties provides hope that the competing man-
dates of population replacement – local spread with spatial
confinement – are achievable. Local replacement systems will
be very useful once refractory genes have been identified, and
laboratory studies and contained field trials have been completed
(Benedict et al., 2008). Threshold-dependent drive systems will
allow disease-refractory genes to be drive to sufficiently high
frequencies locally to test their hypothesized epidemiological
effect (Boete and Koella, 2002; Boete and Koella, 2003), while
minimizing contamination of immediately neighboring popula-
tions. This is an important step towards gaining acceptance for
the use of invasive gene drive systems, with implications for both
disease control and biosafety on a global scale.
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